2019. Том 60, № 6

Июнь

DOI: 10.26902/JSC_id40547

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ К СТАТЬЕ

СОСТОЯНИЕ ПЛАТИНЫ И СТРУКТУРНЫЕ ОСОБЕННОСТИ КАТАЛИЗАТОРОВ Pt/Al₂O₃ В РЕАКЦИИ ОКИСЛЕНИЯ NH₃

Д.А. Свинцицкий^{1,2}, Е.М. Славинская^{1,2}, О.А. Стонкус^{1,2}, А.В. Романенко¹, А.И. Стадниченко^{1,2}, Л.С. Кибис^{1,2}, Е.А. Деревянникова¹, А.А. Евтушкова², А.И. Боронин^{1,2}

¹Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, Россия

E-mail: boronin@catalysis.ru

²Новосибирский государственный университет, Россия

На *Рис. S1* представлена зависимость распределения объема пор (десорбционная ветвь) от их среднего размера для носителей Al_2O_3 после прокалки при 550 и 750°C, а в *Таблице S1* приведены сравнительные характеристики их пористой структуры. Видно, что оба носителя, определенные методом РФА как фаза γ - Al_2O_3 , представляют собой мезопористые материалы со средним диаметром пор около 10 нм. С увеличением температуры прокалки несколько снижается площадь удельной поверхности (S_{БЭТ}) и увеличивается средний диаметр пор. Полученные характеристики являются типичными для фазы γ - Al_2O_3 .

Рис. S1. Кривые распределения объема пор носителей по размерам

[©] Свинцицкий Д.А., Славинская Е.М., Стонкус О.А., Романенко А.В., Стадниченко А.И., Кибис Л.С., Деревянникова Е.А., Евтушкова А.А., Боронин А.И., 2019

ЛОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ
Action in the sublidies of the sublidies

Таблица S1. Результаты исследования пористой структуры носителей Al ₂ O ₃ .								
Образец	S _{БЭТ} ад- сорбция, м ² /г	S _{вјн} де- сорбция, м ² /г	V _{∑ ВЈН} де- сорбция, см ³ /г	V _μ , см ³ /г	Средний d _{пор} , нм	d _{пор вјн} десорбция, нм		
Al ₂ O ₃ (550°C)	203	254	0.56	-	10.9	7.43		
Al ₂ O ₃ (750°C)	174	255	0.54	-	12.4	8.54		

На *Puc. S2* представлена зависимость концентрации аммиака и продуктов реакции от времени и температуры для Pt/Al_2O_3 (катализатор 1) и для пустого кварцевого реактора. Отметим, что поскольку изменение концентрации аммиака вплоть до нагрева до 150°C не сопровождалось образованием продуктов, то можно говорить о его поглощении или выделении. Видно, что при переключении реакционной смеси на реактор с катализатором происходит более сильное поглощение аммиака из реакционной смеси, чем в случае пустого кварцевого реактора. По разнице площадей изменения концентрации NH₃ в обоих случаях было оценено количество поглощенного аммиака, которое для катализатора 1 составило 206 мкмоль/г. При увеличении температуры в ходе линейного нагрева наблюдается выделение аммиака, которое не сопровождается образованием продуктов реакции. Количество выделившегося аммиака составляет 82 мкмоль/г.

Рис. S2. Зависимости концентрации NH₃, продуктов реакции и температуры от времени для катализатора Pt/Al_2O_3 (катализатор 1) и пустого кварцевого реактора при переключении реакционной смеси на реактор и в ходе последующего нагрева.

Снимки ПЭМ катализаторов **1H** и **2H** представлены на *Puc. S3*. Обработка в водороде приводит к частичному срастанию частиц платины. Построенные распределения частиц по размерам хорошо описываются двумя пиками: 1.0 нм и 2.0 нм для катализатора **1H** и 1.1 нм 2.1 нм для катализатора **2H**. Стоит отметить, что укрупнение частиц платины в большей степени происходит в участках повышенной концентрации платины. Например, такой участок хорошо виден на *Puc.S3c* (*участок 1*). Для *участка 2* число частиц платины заметно меньше, размер которых составляет около 1 нм. Укрупнение наночастиц платины под воздействием водорода сопровождается появлением огранки – на соответствующих ПЭМВР снимках (*Puc.S3e*) видно, что на поверхность частиц с размерами выше 1 нм выходят протяженные грани {111} типа (обозначены красной пунктирной линией).

Puc.S3 (а) HRTEM снимок катализатора **1H**, (b) распределение частиц платины по размерам для катализатора **1H**, (c,e) *HRTEM* снимки катализатора **2H**, (d) распределение частиц платины по размерам для катализатора **2H**.

Воздействие реакционной среды NH_3+O_2 представлено на HAADF-STEM и HRTEM снимках для образца **2H** (*Puc.S4*). После каталитических испытаний значительного изменения размеров частиц нанесённой платины не происходит - обнаруживаются как частицы исходного размера (около 1 нм), так и более крупные (около 2 нм). Как и в образце **2H** до реакции, распределение частиц по размерам является бимодальным с модами 1.1 и 2.1 нм. Отметим, что после воздействия реакционной среды некоторое изменение претерпевает носитель. На *Puc.S4b* видно, что частицы Al_2O_3 срастаются и меняют форму на более округлую.

Рис.S4 Снимки катализатора **2H**, после каталитических испытаний в реакции окисления аммиака: (a) HAADF-STEM, (b) HRTEM. Распределение частиц платины по размерам представлено на рисунке (c).