2022. Том 63, № 1

Январь

C. 48 - 60

МАГНИТНЫЕ АНОМАЛИИ В ПОЛИМЕРНО-ЦЕПОЧЕЧНЫХ КОМПЛЕКСАХ Cu(hfac)₂ СО СПИН-МЕЧЕНЫМИ ДИАЛКИЛПИРАЗОЛАМИ

Г.В. Романенко¹, С.В. Фокин¹, Э.Т. Чубакова¹, А.С. Богомяков^{1,2}, В.И. Овчаренко^{1,2}

¹Институт «Международный томографический центр» СО РАН, Новосибирск, Россия E-mail: Victor.Ovcharenko@tomo.nsc.ru ²Институт органической химии им. Н.Д. Зелинского РАН, Москва, Россия

Статья поступилаС доработкиПринята к публикации14.07.202104.08.202104.08.2021

Проведено рентгеноструктурное исследование строения комплексов гексафторацетилацетоната Cu(II) — Cu(hfac)₂— с нитроксильными радикалами L^{R1/R2}, где R1 и R2 — алкильные заместители в 1,3-пиразольном фрагменте. Установлено, что твердые фазы всех [Cu(hfac)₂L^{R1/R2}] образованы полимерными цепями, общим структурным мотивом которых служит дитопная мостиковая координация парамагнитных лигандов по мотиву «голова—голова». Изучение температурной динамики структуры и сопряженного с ней изменения температурной зависимости эффективного магнитного момента комплекса показало, что изменение как R1, так и R2 может существенно повлиять не только на возможность возникновения магнитной аномалий на кривой зависимости эффективного магнитного можента уффективного магнитного магнит

DOI: 10.26902/JSC_id85865

Ключевые слова: нитроксильные радикалы, бис(гексафторацетилацетонат) меди(II), кристаллическая структура, магнитные свойства.

введение

Исследованные [Cu(hfac)₂L^{R1/R2}] принадлежат к дышащим кристаллам на основе комплексов Cu(II) с нитроксильными радикалами (HP), особенность которых состоит в том, что в твердой фазе данных соединений при изменении температуры и/или давления происходят обратимые структурные перестройки, которые вызывают изменение спиновой мультиплетности в обменных кластерах $\{>N-\bullet O-Cu^{2+}-O\bullet-N<\}$ или $\{>N-\bullet O-Cu^{2+}\}$, обусловливающее появление аномалий на кривых температурной зависимости эффективного магнитного момента (µ_{eff}) соединения и специфические изменения в спектрах ЭПР [1-7]. Фазовые переходы в обсуждаемом классе соединений часто происходят без разрушения кристалла, что делает их ценными объектами для детального исследования структурных превращений, индуцируемых внешним воздействием. Это, в свою очередь, становится основой для разработки специфической группы сенсоров на внешнее воздействие [8,9]. Представительную группу исследованных гетероспиновых соединений образуют комплексы Cu(hfac)₂ с HP, содержащими 1-R-пиразол-4-ильный заместитель во втором положении имидазолинового цикла нитронилнитроксильного фрагмента (L^R, схема 1). Для этих соединений накопленная к настоящему времени экспериментальная база данных, содержащая информацию о значениях обменных интегралов и структурных параметров обменных кластеров, позволяет прогнозировать появление спиновых переходов в комплексах в зависимости от размера и положения алкильного заместителя R в пиразольном цикле L^{R} [1].

[©] Романенко Г.В., Фокин С.В., Чубакова Э.Т., Богомяков А.С., Овчаренко В.И., 2022

Значительно меньше изучены соединения, содержащие в пиразольном кольце дополнительный заместитель R2 (схема 1), хотя такое замещение может привести к нетривиальным эффектам. Так, для [Cu(hfac)₂L^{Me/Et}] и [Cu(hfac)₂L^{Et/Me}] (впервые для гетероспиновых соединений) зарегистрирована обратимая твердофазная реакция полимеризации/деполимеризации [6, 7]. При этом изменение расположения R1 и R2 в L^{Me/Et} и L^{Et/Me} привело к противоположной направленности эффектов при охлаждении кристаллов: полимеризации [Cu(hfac)₂L^{Et/Me}] и деполимеризации [Cu(hfac)₂L^{Me/Et}]. Это побудило нас расширить серию полимерно-цепочечных комплексов [Cu(hfac)₂L^{R1/R2}], содержащих алкильные заместители в положениях 1 и 3 пиразольного цикла [10], и изучить температурную динамику структуры и магнитных свойств для комплексов [Cu(hfac)₂] с L^{R1/R2}, где R1 и R2 = Me, R1 и R2 = Et, R1 = Me и R2 = *n*-Pr, R1 = *n*-Pr и R2 = Et.

Схема 1. Нитроксилы LR и LR1/R2

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Коммерческие реагенты и растворители использовали без дополнительной очистки. За ходом реакций следили с помощью тонкослойной хроматографии на алюминиевых пластинах Silica gel 60 F254 (Merck). Хроматографическое исследование проводили на силикагеле (0.063— 0.200 мм, Merck) для колоночной хроматографии. Инфракрасные спектры (4000—400 см⁻¹) нитроксилов регистрировали на приборе VECTOR 22 Bruker в таблетках КВг. Микроанализ проводили на анализаторе EA-3000 HEKAtech GmbH. По методикам, приведенным в публикациях, синтезированы 2,3-бис(гидроксиамино)-2,3-диметилбутан, моногидрат 2,3-бис(гидроксиамино)-2,3-диметилбутансульфата [11] и 2-(1,3-диметил-1H-пиразол-4-ил)-4,4,5,5-тетраметил-4,5дигидро-1H-имидазол-3-оксид-1-оксил (L^{Me/Me}) [12]. Остальные нитроксилы, использованные для синтеза описанных ниже комплексов, получены по общей для диалкилзамещенных HP схеме 2, подробно описанной в [6, 7, 10].

Схема 2. Общая схема синтеза нитроксилов. Моногидрат 2,3-бис(гидроксиамино)-2,3-диметилбутансульфата или 2,3-бис(гидроксиамино)-2,3-диметилбутан (1); NaIO₄/CH₂Cl₂/H₂O или MnO₂/O₂/CH₃OH (2)

2-(1,3-диэтил-1*H*-пиразол-4-ил)-4,4,5,5-тетраметил-4,5-дигидро-1*H*-имидазол-3-оксид-1оксил ($L^{Et/Et}$) и **2-(1-метил-3-пропил-1***H*-пиразол-4-ил)-4,4,5,5-тетраметил-4,5-дигидро-1*H*имидазол-3-оксид-1-оксил ($L^{Me/Pr}$). Синтезировали из 1,3(5)-диэтил-1*H*-пиразола и 1-метил-3-пропил-1*H*-пиразол-4-карбальдегида соответственно. Процедуру формилирования, конденсации с 2,3-бис(гидроксиамино)-2,3-диметилбутаном и окисления проводили аналогично ранее описанной процедуре для $L^{Me/Et}$ [10, 13]. $L^{Et/Et}$. Выход: 88 %. При перекристаллизации продукта из гексана в твердую фазу по данным РСА и ИК спектроскопии выделялись темно-синие кристаллы ромбической формы $L^{Et/Et}$. $T_{\pi\pi}$ 92 °C. Найдено (%): С 59.5; Н 7.8; N 20.0. $C_{14}H_{23}N_4O_2$. Вычислено (%): С 60.2; Н 8.3; N 20.1. ИК спектр (v, см⁻¹): 3444, 3126, 2968, 2931, 2871, 1580, 1506, 1445, 1393, 1352, 1321, 1220, 1173, 1156, 1143, 1111, 1085, 1054, 1014, 956, 871, 847, 802, 761, 728, 698, 654, 608, 540, 500, 464. $\mu_{эф\phi} = 1.8 \ \mu_B \ (50-300 \ K)$.

 $L^{Me/Pr}$. Выход: 95 %. При перекристаллизации продукта из гексана в твердую фазу по данным РСА и ИК спектроскопии выделялись кристаллы $L^{Me/Pr}$ сине-фиолетового цвета. $T_{пл}$ 90 °C. Найдено (%): С 60.4; Н 8.1; N 20.0. $C_{14}H_{23}N_4O_2$. Вычислено (%): С 60.2; Н 8.3; N 20.1. ИК спектр (v, см⁻¹): 3418, 3125, 2999, 2961, 2935, 2871, 1583, 1512, 1486, 1458, 1397, 1352, 1291, 1219, 1173, 1154, 1142, 1088, 1004, 895, 871, 839, 774, 747, 710, 654, 642, 638, 609. $\mu_{эф\phi} = 1.75 \mu_B$ (30—300 K).

Кристаллы L^{Me/Et} и L^{Et/Me} выращивали из гексана [6, 7].

[Cu(hfac)₂L^{Me/Me}]. Смесь Cu(hfac)₂ (0.0950 г; 0.20 ммоль) и L^{Me/Me} (0.0500 г; 0.20 ммоль) растворяли в 15 мл эфира. К полученному темно-коричневому раствору добавляли 15 мл гексана, затем избыток растворителя удаляли медленным током воздуха (до ~15 мл). Образовавшиеся темные кристаллы (при растирании — темно-синие) отфильтровывали, промывали гексаном и сушили на воздухе. Выход: 83 %. T_{nn} 108 °C. Комплекс растворим в большинстве органических растворителей. При выдерживании в растворе в течение суток и более он постепенно разлагается (при небольшом нагревании — через несколько минут). При длительном хранении (более 10 лет) в кристаллическом виде комплекс постепенно превращается в комплекс с иминопроизводным данного радикала. Вычислено для $C_{22}H_{21}N_4O_6F_{12}Cu$ (%): С 36.3; Н 2.9; N 7.7; F 31.3. Найдено (%): С 37.0; Н 3.1; N 7.6; F 31.3. Данный комплекс образуется также при использовании в качестве растворителя чистого бензола или его смесей с гексаном (гептаном).

[Cu(hfac)₂L^{Et/Et}]. Смесь навесок Cu(hfac)₂ (0.0477 г, 0.1 ммоль) и L^{Et/Et} (0.0279 г, 0.10 ммоль) растворяли в 7 мл гексана. Избыток растворителя медленно удаляли током воздуха при комнатной температуре до объема ~2 мл, после чего реакционную смесь охлаждали до -18 °C. Образовавшиеся через 36—38 ч кристаллы темно-коричневого цвета отфильтровывали и сушили на воздухе. Выход: 88 %. $T_{\text{пл}}$ 86—87 °C. Найдено (%): С 38.2; Н 3.4; F 30.6; N 7.7. C₂₄H₂₅CuF₁₂N₄O₆. Вычислено (%): С 38.1; Н 3.3; F 30.1; N 7.4.

[**Cu(hfac)**₂**L**^{**P**r/Et}]. Смесь Cu(hfac)₂ (0.0477 г, 0.1 ммоль) и смеси маслообразных L^{**P**r/Et} и L^{**P**r/Et} (0.0300 г, 0.1 ммоль) растворяли в 2.5 мл Et₂O, добавляли 4 мл гексана. Реакционную смесь охлаждали до -30 °C. Образовавшиеся через ~120 ч крупные призматические кристаллы темнокрасного цвета отфильтровывали и высушивали на воздухе. Выход: 77 %. *T*_{пл} 81 °C. Найдено (%): C 39.1; H 3.1; F 30.5; N 7.4. C₂₅H₂₇CuF₁₂N₄O₆. Вычислено (%): C 38.9; H 3.5; F 29.6; N 7.3. [**Cu(hfac)**₂L^{**M**e/**P**r}]. Смесь навесок Cu(hfac)₂ (0.0477 г, 0.1 ммоль) и L^{**M**e/**P**r} (0.0280 г, 0.1 ммоль)

[Cu(hfac)₂L^{Me/PT}]. Смесь навесок Cu(hfac)₂ (0.0477 г, 0.1 ммоль) и L^{Me/PT} (0.0280 г, 0.1 ммоль) растворяли в 4 мл гексана при небольшом нагревании (47 °C). К полученному раствору добавляли 0.5 мл Et₂O, реакционную смесь выдерживали при комнатной температуре в течение 1 ч, после чего охлаждали до +10 °C. Образовавшиеся через 24 ч кристаллы коричневого цвета отфильтровывали и сушили на воздухе. Выход: 71 %. T_{nn} 105—106 °C. Найдено (%): С 38.8; Н 3.6; F 29.1; N 7.8. C₂₄H₂₅CuF₁₂N₄O₆. Вычислено (%): С 38.1; Н 3.3; F 30.1; N 7.4.

Рентгеноструктурные исследования. Наборы отражений для монокристаллов соединений получены на автоматических дифрактометрах производства Bruker AXS — SMART APEX (излучение MoK_{α}) с гелиевым охладителем открытого потока Helix (Oxford Cryosystems) и Apex Duo (излучение CuK_{α}) с криосистемой Cobra (Oxford Cryosystems) по стандартной методике. Структуры расшифрованы прямыми методами и уточнены полноматричным методом наименьших квадратов анизотропно для неводородных атомов. Атомы Н частично локализованы при синтезе разностной электронной плотности (остальные — рассчитаны геометрически) и включены в уточнение в модели наездника. Все расчеты проводились с использованием пакета программ SHELX [14, 15]. Кристаллографические характеристики исследованных соединений и детали экспериментов представлены в табл. 1—3. Полные наборы рентгеноструктурных данных депонированы в Кембриджском банке структурных данных (табл. 1—3).

Таблица 1

Кристаллографические	характеристики соединений и детали экспериментов для [Cu(hfac) ₂ L ^{EVEt}]
	_

Параметр	Значение							
Формульный вес			757.02					
Пространственная группа		$P\overline{1}$						
Ζ		2						
<i>Т</i> , К	295	250	200	150	103			
<i>a</i> , Å	10.306(3)	10.3556(4)	10.3537(2)	10.3930(2)	10.4420(4)			
<i>b</i> , Å	11.960(3)	11.8866(5)	11.8651(2)	11.8459(2)	11.8618(4)			
<i>c</i> , Å	14.684(4)	14.5269(6)	14.3853(2)	14.1818(3)	13.9753(4)			
α, град.	109.050(17)	109.215(3)	109.1890(10)	109.0660(10)	108.842(2)			
β, град.	108.782(17)	108.702(2)	108.8550(10)	109.1120(10)	109.5040(10)			
ү, град.	90.234(11)	90.301(3)	90.3350(10)	90.3730(10)	90.478(2)			
V, Å ³	1607.6(8)	1587.07(12)	1566.99(5)	1546.61(5)	1531.08(9)			
$d_{\rm выч}, \Gamma/{\rm cm}^3$	1.564	1.584	1.604	1.626	1.642			
θ _{макс} , град.	28.156	28.331	28.344	28.295	28.049			
<i>I_{hkl}</i> измеренных / незави- симых	27482 / 7747	28115 / 7780	28618 / 7761	26223 / 7580	24254 / 7269			
$R_{ m int}$	0.0877	0.0505	0.0469	0.0534	0.0531			
$I_{hkl} (I > 2\sigma_I) /$ число уточ- няемых параметров	3111 / 526	4005 / 526	5228 / 526	4617 / 472	4718 / 481			
GOOF	0.762	0.807	0.942	0.937	0.889			
$R_1 / wR_2 (I > 2\sigma_I)$	0.0418 / 0.0869	0.0386 / 0.0821	0.0360 / 0.0868	0.0380 / 0.0755	0.0392 / 0.0863			
R_1 / wR_2 (all data)	0.1216 / 0.1071	0.0935 / 0.0961	0.0587 / 0.0938	0.0801 / 0.0858	0.0704 / 0.0963			
CCDC	2095859	2095854	2095858	2095852	2095851			

Таблица 2

Кристаллографические характеристики соединений и детали экспериментов для [Cu(hfac)₂L^{Me/Me}]

Параметр	Значение				
1	2	3	4	5	
Формульный вес	728.97				
Пространственная группа; Z	205	P1	; 2	75	
a, A	10.0361(6)	9.9795(5)	9.8556(3)	9.790(2)	
b, Å	11.5671(7)	11.4924(7)	11.4076(4)	10.931(2)	
<i>c</i> , Å	14.9682(9)	14.9137(8)	14.7525(5)	14.626(3)	
α, град.	70.670(4)	70.482(3)	70.535(2)	69.59(3)	
β, град.	71.764(3)	71.915(3)	72.376(2)	71.08(3)	
ү, град.	89.008(4)	89.954(3)	89.074(2)	87.64(3)	
$V, Å^3$	1550.10(16)	1525.41(15)	1481.94(9)	1383.0(6)	
$d_{\text{выч}}, \Gamma/\text{cm}^3$	1.562	1.587	1.634	1.750	
θ _{макс} , град.	28.195	28.053	28.189	23.286	

			Окончани	те табл. 2
1	2	3	4	5
<i>I_{hkl}</i> измеренных / независимых	24372 / 7441	25770 / 7231	25861 / 7158	7183 / 3808
R _{int}	0.0499	0.0565	0.0473	0.0480
<i>I_{hkl}</i> (<i>I</i> > 2 <i>σ_I</i>) / число уточняемых параметров	4414 / 517	4737 / 499	5188 / 528	2304 / 482
GOOF	0.901	0.983	1.095	0.993
$R_1 / wR_2 (I > 2\sigma_I)$	0.0386 / 0.0985	0.0407 / 0.1030	0.0399 / 0.1021	0.0550 / 0.1345
R_1 / wR_2 (all data)	0.0702 / 0.1089	0.0654 / 0.1115	0.0603 / 0.1090	0.1039 / 0.1624
CCDC	2095857	2095856	2095855	2095865

Таблица З

Кристаллографические ха	рактеристики соединен	ний и детали экспериментов
дл	я исследованных струк	тур

Параметр	[(Cu(hfac) ₂ L ^{Me/Pr}]	$[Cu(hfac)_2L^{Pr/Et}]$	L ^{Et/Et}	L ^{Me/Pr}
Формульный вес		757.02			279.36	280.37
Пространственная группа; Z		$P\overline{1}$; 2		$P\overline{1}$; 2	<i>C</i> 2/ <i>c</i> ; 8	<i>Cc</i> ; 4
<i>Т</i> , К	295	240	103	295	296	296
<i>a</i> , Å	10.9321(8)	10.7509(4)	10.5992(3)	9.7910(3)	31.19(2)	16.3360(11)
<i>b</i> , Å	11.4578(9)	11.3700(4)	11.2645(3)	12.8997(4)	9.325(8)	9.4849(6)
<i>c</i> , Å	14.0724(11)	13.8888(5)	13.6412(4)	14.7805(4)	11.600(9)	11.6270(14)
α, град.	109.887(5)	108.611(2)	108.190(2)	109.5920(10)	90	90
β, град.	102.217(5)	102.016(2)	101.725(2)	107.5990(10)	109.68(4)	119.313(4)
γ, град.	94.970(5)	95.286(2)	95.597(2)	90.335(2)	90	90
$V, Å^3$	1595.7(2)	1550.51(10)	1492.15(8)	1664.40(9)	3177(4)	1570.9(2)
$d_{\rm bmy}, {\rm f/cm}^3$	1.576	1.621	1.685	1.539	1.168	1.185
θ _{макс} , град.	27.997	28.600	28.160	28.353	30.553	28.489
<i>I</i> _{<i>hkl</i>} измеренных	27103	26737	16678	28519	14027	5668
<i>I_{hkl}</i> независимых	7574	7746	7172	8179	4652	3315
R _{int}	0.0486	0.0587	0.0503	0.0532	0.15981	0.0704
$I_{hkl} (I > 2\sigma_I) /$ число уточняе-	3285 / 544	4236 / 538	5542 / 474	4478 / 554	1055 / 182	1600 / 189
мых параметров						
GOOF	0.807	0.855	0.993	0.870	0.902	0.773
$R_1 (I > 2\sigma_I)$	0.0353	0.0371	0.0337	0.0388	0.1106	0.0464
$wR_2 (I > 2\sigma_I)$	0.0762	0.0778	0.0836	0.0959	0.2589	0.0816
R_1 (все значения)	0.1106	0.0802	0.0484	0.0782	0.3411	0.1045
wR_2 (все значения)	0.0912	0.0872	0.0888	0.1063	0.3857	0.0963
CCDC	2095864	2095863	2095861	2095862	2095850	2095853

Магнитные измерения. Магнитную восприимчивость (χ) поликристаллических образцов измеряли на SQUID-магнетометре MPMS*XL* фирмы «Quantum Design» в температурном интервале 2—300 К при напряженности магнитного поля 5 кЭ. Парамагнитные составляющие магнитной восприимчивости определяли с учетом диамагнитного вклада, оцененного из констант Паскаля. Эффективный магнитный момент вычисляли по формуле $\mu_{eff} = [3k\chi T / (N_A \mu_B^2)]^{1/2}$, где N_A , μ_B и k — число Авогадро, магнетон Бора и постоянная Больцмана соответственно.

52

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Строение нитроксилов $L^{Me/Me}$, $L^{Et/Et}$ и $L^{Me/Pr}$, которые удалось получить в виде монокристаллов, пригодных для проведения PCA, представлено на рис. 1. Там же показано строение молекул $L^{Me/Et}$ и $L^{Et/Me}$, которые далее используются при сопоставлении магнитных свойств индивидуальных HP. Длины связей N—O лежат в интервале 1.278(2)—1.284(2) Å, что типично для нитронилнитроксильных радикалов [16—18]. Расстояния между парамагнитными центрами — атомами O соседних молекул — превышают 4 Å. Введение заместителя R2 в третье положение пиразольного цикла приводит к значительному развороту плоскости пиразольного цикла относительно нитронилнитроксильного фрагмента {ONCNO}. В моноалкилзамещенных спинмеченых пиразолах L^{Me} и L^{Et} этот угол не превышает 5°, тогда как в диалкилпиразолах он составляет величину более 30° (табл. 4).

Результаты исследования магнитных свойств $L^{R1/R2}$ представлены на рис. 2. Высокотемпературные значения $\mu_{3\phi\phi}$ хорошо согласуются с теоретической чисто спиновой величиной 1.73 μ_B . Для $L^{Me/Et}$ и $L^{Et/Me}$ при понижении температуры происходит сначала постепенное уменьшение $\mu_{3\phi\phi}$, а ниже 100 К более резкое. Такое поведение зависимостей $\mu_{3\phi\phi}(T)$ указывает на нали-

Рис. 1. Строение молекул $L^{Me/Me}(a)$, $L^{Et/Et}(b)$, $L^{Me/Et}(c)$, $L^{Et/Me}(d)$ и $L^{Me/Pr}(e)$

Таблица 4

Параметр	L ^{Me/Me} [12] [ECIGAY] [17]	L ^{Me/Et} [7]	L ^{Et/Me} [6] [GEMZOR] [17]	$L^{Et/Et}$	L ^{Me/Pr}
<i>T</i> , K	296	296	296	296	296
N—O	1.283(2),	1.289(3),	1.293(2), 1.282(2),	1.280(6),	1.289(3),
	1.278(2)	1.272(3)	1.287(2), 1.279(2)	1.280(6)	1.282(4)
∠CN ₂ O ₂ —Pz	35.2	33.7	40.5, 39.9	31.9	37.7
$O_{NO} \dots O_{NO}$	4.353(2)	4.187(3)	3.798(2)	4.002(5)	4.439(3)
<i>g</i> -фактор	—	2.04(1)	2.06(1)	2.06(1)	2.04(1)
$J, \operatorname{cm}^{-1}$	—	-5.6(1)	-16.3(1)	0.72(2)	-0.01(2)

Избранные стереохимические параметры HP, g-факторы и энергия обменного взаимодействия J

чие антиферромагнитных обменных взаимодействий между спинами НР. Для $L^{Me/Pr}$ значение $\mu_{3\phi\phi}$ остается постоянным при охлаждении до 5 K, а для $L^{Et/Et}$ ниже 30 K наблюдается небольшое увеличение $\mu_{3\phi\phi}$, что указывает на наличие ферромагнитных обменных взаимодействий. Экспериментальные зависимости $\mu_{3\phi\phi}(T)$ хорошо описываются в рамках модели обменносвязанных димеров (спин-гамильтониан $H = -2J \cdot S_1 S_2$), оптимальные значения g-факторов и параметров обменного взаимодействия *J* приведены в табл. 4. Увеличение размера заместителей в пиразольном цикле приводит к уменьшению энергии обменных взаимодействий между спинами нитроксилов.

Все обсуждаемые ниже [Cu(hfac)₂L^{R1/R2}] имеют цепочечно-полимерное строение твердой фазы. Окружение всех кристаллографически независимых атомов Cu — центросимметричная квадратная бипирамида, экваториальную плоскость которой образуют атомы O_{hfac} , аксиальные позиции занимают либо атомы O_{NO} нитронилнитроксильного фрагмента, либо атомы N пиразола (рис. 3). За счет мостиковой (дитопной) координации парамагнитных лигандов реализуется чередование координационных узлов {CuO₄(O_{NO})₂} и {CuO₄N₂}, что обусловливает общий мотив цепи «голова—голова» (рис. 3). Узлы {CuO₄(O_{NO})₂} представляют собой гетероспиновые обменные кластеры {>N-•O—Cu²⁺—O•-N<} с расстояниями Cu—O_{NO} 2.280(2)—2.360(1) Å при комнатной температуре (табл. 5). При этом второй атом O_{NO} нитронилнитроксильного фрагмента не принимает участия в координации, и межцепочечные расстояния между этими атомами превышают 3.9 Å.

Исследование магнитных свойств показало, что для комплекса [Cu(hfac)₂L^{Me/Me}] значение $\mu_{3\phi\phi}$ при 300 K составляет 2.57 μ_B (рис. 4*a*); при понижении температуры оно постепенно воз-

Рис. 2. Зависимость $\mu_{3\phi\phi}(T)$ для нитронилнитроксилов $L^{R1/R2}$ (точки — экспериментальные значения, сплошные линии — теоретические кривые)

Рис. 3. Фрагмент цепочки в структуре [Cu(hfac)₂L^{Me/Me}]

таолица .	Т		5
-----------	---	--	---

Избранные значения длин связей, межмолекулярных контактов (Å) и углов (град.) в [Cu(hfac)₂(L^{R1/R2})]

-					
<i>Т</i> , К	Cu—O _{NO}	Cu—N	∠CuON	N—O _{Cu} , N—O	O _{NO} O _{NO}
			Cu(hfac) ₂ (L ^{Me/Me})]		
295	2.360(1)	2.546(2)	134.5(1)	1.290(2), 1.278(2)	3.971(3)
240	2.351(1)	2.521(2)	133.3(1)	1.286(2), 1.275(2)	3.916(2)
120	2.336(1)	2.466(2)	131.9(1)	1.287(2), 1.270(2)	3.838(2)
75	2.184(5)	2.415(6)	128.4(4)	1.259(7), 1.243(7)	3.774(7)
			[Cu(hfac) ₂ (L ^{Me/Pr})]		
295	2.359(1)	2.651(2)	136.9(1)	1.289(2), 1.274(2)	3.980(3)
240	2.341(1)	2.650(2)	135.5(1)	1.290(2), 1.280(2)	3.781(3)
103	2.307(1)	2.598(1)	132.8(1)	1.294(2), 1.272(2)	3.643(2)
			$[Cu(hfac)_2(L^{Et/Et})]$		
295	2.280(2)	2.533(2)	132.8(1)	1.297(3), 1.269(3)	4.827(4)
250	2.247(2)	2.511(1)	131.8(1)	1.297(2), 1.272(2)	4.828(3)
200	2.198(1)	2.492(1)	130.4(1)	1.300(2), 1.276(2)	4.828(3)
150	2.109(1)	2.474(2)	128.4(1)	1.304(2), 1.271(2)	4.820(3)
103	2.020(1)	2.461(2)	127.0(1)	1.306(2), 1.277(2)	4.825(3)
			$[Cu(hfac)_2(L^{Pr/Et})]$		
295	2.338(1)	2.571(1)	133.1(1)	1.293(2), 1.279(2)	4.903(2)
$a \downarrow $			b -]	
28-	1		28-		
2.0			2.0		
2		<u>₩~₩~~~₩~~</u> ₩~			
_m 2.4 -	a sad		_m 2.4 -		
÷	8		=. 		
⊐, I	-		<u></u> з.		
2.0			2.0-	i	
	5				
16			16-		
1.0			1.0 -		
0	100 <i>T</i> .	200 K	300 (0 100 <i>T</i> . K	200 300
	-,			-,	

Рис. 4. Зависимость $\mu_{9\phi\phi}(T)$ для комплексов [Cu(hfac)₂L^{Me/Me}] (*a*) и [Cu(hfac)₂L^{Me/Pr}] (*b*); точки — экспериментальные данные, сплошные линии (1, 2, 3) — теоретические кривые, полученные в результате моделирования (пояснение в тексте)

растает до 2.69 $\mu_{\rm B}$ (при 90 K), после чего резко уменьшается до 2.38 $\mu_{\rm B}$ (при 83 K). При дальнейшем охлаждении наблюдается небольшое увеличение до 2.42 $\mu_{\rm B}$ (при 45 K) и вновь резкое уменьшение до 1.83 $\mu_{\rm B}$ (при 35 K). Ниже 35 K значение $\mu_{3\phi\phi}$ практически не меняется и близко к теоретической чисто спиновой величине 1.86 $\mu_{\rm B}$ для одного парамагнитного центра со спином S = 1/2 при *g*-факторе, равном 2.15.

Кривые, полученные при нагревании и охлаждении, практически совпадают, что указывает на обратимость наблюдаемых переходов. В интервале температур 300—90 К зависимость $\mu_{3\varphi\varphi}(T)$ описывается выражением для магнитной восприимчивости с равными вкладами от трехспиновых обменных кластеров {>N-•O—Cu²⁺—O•–N<} и изолированных ионов Cu²⁺ координационных узлов {CuO₄N₂} (рис. 4*a*, кривая *l*)

$$\chi = (\chi(J,T) + C/T)/2,$$

где $\chi(J,T) = \frac{N\mu_B^2}{3kT} \cdot \frac{15(g_{Cu} + 2g_R)/3)^2 \cdot e^{J/kT} + 1.5(4g_R - g_{Cu})/3)^2 \cdot e^{-2J/kT} + 1.5g_{Cu}^2}{4 \cdot e^{J/kT} + 2 \cdot e^{-2J/kT} + 2}$ — выражение

для магнитной восприимчивости трехспинового обменного кластера (спин-гамильтониан $H = -2J(S_{R1}S_{Cu} + S_{Cu}S_{R2})$, $S_{R1} = S_{R2} = 1/2$ — спины HP), магнитную восприимчивость изолированных ионов Cu²⁺ учитывали с использованием закона Кюри $\chi = C/T$, где $C = N\mu_B^2(g_{Cu})^2 S(S+1)/3k \approx (g_{Cu})^2 S(S+1)/8$. Оптимальные значения g_{Cu} и *J* составляют 2.09 см⁻¹ и 21.5 см⁻¹ (значение $g_R = 2$ фиксировали во избежание перепараметризации).

Резкие изменения зависимости $\mu_{3\phi\phi}(T)$ обусловлены структурными трансформациями в гетероспиновых кластерах {>N-•O—Cu²⁺—O•-N<}. Так, изменение координации нитроксила с аксиальной на экваториальную приводит к возникновению сильного антиферромагнитного обмена между спинами иона Cu²⁺ и HP и компенсации части спинов. Анализ зависимости $\mu_{3\phi\phi}(T)$ в области 85—45 К позволяет оценить долю кластеров α , в которых произошел структурный переход, по выражению $\chi = ((1 - \alpha) \cdot \chi(J,T) + (1 + \alpha) \cdot C/T)/2$, используя полученные для высокотемпературной области значения параметров g_{Cu} и J. Изменение $\mu_{3\phi\phi}$ при 85 К соответствуют переходу ~40 % гетероспиновых кластеров {>N-•O—Cu²⁺—O•-N<} ($\alpha = 0.4$, рис. 4*a*, кривая 3). При 40 К происходит переход в оставшихся координационных узлах {CuO₆} ($\alpha = 1$, рис. 4*a*, кривая 3).

Для комплекса [Cu(hfac)₂L^{Me/Pr}] зависимость $\mu_{3\phi\phi}(T)$ имеет другой характер (рис. 4*b*). Значение $\mu_{3\phi\phi}$, равное 2.79 μ_B при 300 K, уменьшается сначала постепенно, а ниже 80 K более резко, достигая 1.78 μ_B при 5 K. Высокотемпературное значение $\mu_{3\phi\phi}$ соответствует теоретической чисто спиновой величине 2.45 μ_B для двух парамагнитных центров — одного иона Cu(II) и нитроксила со спинами S = 1/2. Низкотемпературное значение $\mu_{3\phi\phi}$ соответствует теоретической чисто спиновой величине для одного парамагнитного центра со спином S = 1/2.

Для [Cu(hfac)₂L^{Et/Et}] значение $\mu_{3\phi\phi}$ при 300 К составляет 2.65 μ_B (рис. 5*a*) и при понижении температуры уменьшается, выходя на плато ~1.84 µ_В ниже 80 К. Высокотемпературное значение µ_{эфф} соответствует теоретической чисто спиновой величине 2.45 µ_В для двух парамагнитных центров — одного иона Cu^{2+} и HP со спинами S = 1/2. Низкотемпературное значение μ_{abb} близко к теоретической чисто спиновой величине для одного парамагнитного центра со спином S = 1/2. Уменьшение µ_{эфф} в интервале температуры 300—80 К указывает на наличие плавного спинового перехода и реализацию в низкотемпературной области сильных антиферромагнитных взаимодействий в трехспиновых обменных кластерах {>N-•O-Cu^{II}-O•-N<}, характерных для экваториальной координации нитроксилов. Анализ зависимости $\mu_{abd}(T)$ ниже 130 K позволяет оценить энергию антиферромагнитного обменного взаимодействия как |J| > 85 см⁻¹ при значении $g_{Cu} = 2.3$. В области комнатных температур зависимость $\mu_{a\phi\phi}(T)$ приближается к теоретической кривой со значениями параметров g_{Cu} и J, равными 2.3 см⁻¹ и 14 см⁻¹, которая соответствует слабым ферромагнитным взаимодействиям в трехспиновых обменных кластерах {>N-•O-Cu^{II}—O•–N<}, характерным для аксиальной координации нитроксилов. В целях сравнения приведена теоретическая кривая со значениями параметров g_{Cu} и J, равными 2.3 см⁻¹ и -14 см⁻¹, соответствующая слабому антиферромагнитному обмену.

Puc. 5. Зависимость $\mu_{9\varphi\varphi}(T)$ для комплексов [Cu(hfac)₂L^{Et/Et}] (*a*) и [Cu(hfac)₂L^{Pr/Et}] (*b*); сплошные линии (1, 2, 3) — теоретические кривые, полученные в результате моделирования (см. пояснение в тексте)

Для комплекса [Cu(hfac)₂L^{Pr/Et}] значение $\mu_{pq\phi}$ при 300 К составляет 2.55 μ_B и при понижении температуры сначала постепенно, а ниже 150 К более резко уменьшается (рис. 5*b*), достигая 2.27 μ_B при 80 К. Ниже 80 К наблюдается увеличение $\mu_{pq\phi}$ до 2.42 μ_B при 7 К, что указывает на наличие ферромагнитных обменных взаимодействий. Анализ зависимости $\mu_{pq\phi}(T)$ в интервале температуры 5—80 К позволяет оценить энергию обменных взаимодействий и долю гетероспиновых кластеров {>N-•O-Cu²⁺-O•-N<} с экваториальной координацией нитроксилов и, как следствие, с сильным антиферромагнитным обменом. Оптимальные значения параметров g_{Cu} и *J* равны 2.14 см⁻¹ и 9.7 см⁻¹ при фиксированном значении $\alpha = 0.5$ (табл. 5*b*, кривая *3*). Теоретическая кривая *1* соответствует значению $\alpha = 1$ при тех же значениях параметров g_{Cu} и *J* ав области высоких температур приближается к экспериментальным значениям $\mu_{pq\phi}$. В интервале температур 300—150 К экспериментальная зависимость $\mu_{pq\phi}(T)$ хорошо описывается кривой со значениями параметров g_{Cu} и *J*, равными 2.24 см⁻¹ и -16.4 см⁻¹ при $\alpha = 1$ (рис. 5*b*, кривая *2*).

В кристаллических структурах [Cu(hfac)₂L^{R1/R2}] полимерные цепи упакованы сходным образом (рис. 6), и межцепочечные расстояния между некоординированными атомами O_{NO}...O_{NO} достаточно велики (табл. 5), поэтому наблюдаемые различия в температурной динамике магнитных свойств вызваны в первую очередь особенностями изменения строения комплекса внутри цепей.

Серия низкотемпературных рентгеноструктурных исследований [Cu(hfac)₂(L^{Me/Me})] показала, что окружение атома Cu при охлаждении от 300 K до 120 K меняется незначительно — длина связи Cu—O_{NO} уменьшается всего на 0.024 Å (от 2.360 Å до 2.336 Å). Далее к 75 K она сокращается сразу на 0.152 Å (табл. 5), т.е. наблюдается тенденция к смене удлиненной ян-теллеровской оси в окружении атома Cu в координационном узле {CuO6} с O_{NO}—Cu—O_{NO} на O_{hfac}—Cu—O_{hfac}. Ниже этой температуры установить ход изменений в структуре не удалось из-за растрескивания кристаллов.

Сравнение структур [Cu(hfac)₂(L^{Me/Me})] и [Cu(hfac)₂(L^{Me/Pr})] показало сходство строения их фрагментов и упаковок цепочек, а также изменения в их строении при понижении температуры от 300 K до 100 K. Существенно различными оказались расстояния Cu—N в узлах {CuO₄N₂}: в [Cu(hfac)₂(L^{Me/Pr})] оно на 0.1 Å больше и мало меняется при охлаждении кристалла. Это, вероятно, связано с расположением Pr-заместителя в ограниченном пространстве между лигандами hfac этого узла и некоординированным фрагментом HP (рис. 7), что не дает возможности сближения атомов в Cu и O_{NO} на расстояние, необходимое для реализации спинового перехода. Следует отметить также значительное сокращение расстояний между нитроксильными радикалами

Рис. 6. Упаковка полимерных цепей комплексов [Cu(hfac)₂L^{R1/R2}] в кристалле

соседних цепочек O_{NO}...O_{NO} — на 0.35 Å в интервале 295—103 К (табл. 5), которое приводит к усилению антиферромагнитных взаимодействий между ними и служит причиной уменьшения значения $\mu_{ab\phi}$ при температуре ниже 80 К.

Особенность строения [Cu(hfac)₂L^{Et/Et}] и [Cu(hfac)₂L^{Pr/Et}] — расположение терминальных групп алкильных заместителей по одну сторону пиразольного цикла (в свободном L^{Et/Et} они развернуты в разные стороны, рис. 1). В его полимерной цепочке при 295 К расстояния Cu—O_{NO} в узлах {CuO₆} (табл. 5) наиболее короткие из всех [Cu(hfac)₂L^{Et/R2}] с мотивом «голова—голова». При понижении температуры от 295 К до 103 К зарегистрировано их плавное сокращение от 2.279(2) Å до 2.020(1) Å, т.е. в узлах {CuO₆} происходит смена удлиненной ян-теллеровской

Рис. 7. Фрагмент цепочки [Cu(hfac)₂($L^{Me/Pr}$)] при *T* = 103 К в представлении заполнения пространства (space-filling); атомы Pr-заместителя выделены малиновым цветом (см. электронную версию)

Рис. 8. Фрагменты цепочки [Cu(hfac)₂(L^{Pr/Et})] в представлении заполнения пространства (space-filling); атомы алкильных заместителей выделены фиолетовым цветом (см. электронную версию)

оси с О_{NO}—Сu—O_{NO} на О_{hfac}—Сu—O_{hfac}. Это соответствует уменьшению величины µ_{эфф} вследствие усиления в этих узлах обменных взаимодействий антиферромагнитного характера (рис. 5*a*). Данный эффект, как было показано ранее с помощью квантово-химических расчетов, следствие увеличения при понижении температуры доли низкотемпературной фазы в структуре высокотемпературной фазы [19—21].

Монокристаллы [Cu(hfac)₂L^{Pr/Et}] оказались термически неэластичными и разрушались при охлаждении. По этой причине методом РСА проследить изменение расстояний в твердом КС при его охлаждении не удалось. Как можно видеть на рис. 8, два объемных заместителя в L^{Pr/Et}, расположенные между лигандами hfac и некоординированным фрагментом нитроксила, несомненно, должны затруднять смещение фрагментов цепочки при охлаждении кристалла.

ЗАКЛЮЧЕНИЕ

Таким образом, сравнение строения и температурной динамики структур гетероспиновых комплексов [Cu(hfac)₂L^{Me/Me}], [Cu(hfac)₂L^{Et/Et}], [Cu(hfac)₂L^{Me/Pr}], [Cu(hfac)₂L^{Pr/Et}] с описанными ранее для комплексов с моноалкил- и диалкилзамещенными спин-мечеными пиразолами [Cu(hfac)₂L^{Me/H}], [Cu(hfac)₂L^{Et/H}], [Cu(hfac)₂L^{Pr/H}], [Cu(hfac)₂L^{Me/H}] и [Cu(hfac)₂L^{Me/Et}] показало, что изменение как заместителя R1, так и R2 может существенно повлиять не только на возможность возникновения аномалий на кривой зависимости эффективного магнитного момента от температуры, но и на ее вид.

Работа поддержана Российским научным фондом (грант 17-13-01022) и Российским фондом фундаментальных исследований в части синтеза соединений (грант № 18-29-04002).

СПИСОК ЛИТЕРАТУРЫ

- 1. V. Ovcharenko. In: Stable Radicals / Ed. R. Hicks. Chichester, UK: John Wiley & Sons, Ltd, **2010**, 461–506. https://doi.org/10.1002/9780470666975.ch13
- V. Ovcharenko, E. Bagryanskaya. In: Spin-Crossover Mater / Ed. M.A. Halcrow. Oxford, UK: John Wiley & Sons Ltd, 2013, 239–280. https://doi.org/10.1002/9781118519301.ch9
- N.A. Artiukhova, G.V. Romanenko, A.S. Bogomyakov, I.Y. Barskaya, S.L. Veber, M.V. Fedin, K.Y. Maryunina, K. Inoue, V.I. Ovcharenko. J. Mater. Chem. C, 2016, 4, 11157–11163. https://doi.org/10.1039/C6TC03216H
- 4. S.V. Fokin, E.T. Kostina, E.V. Tret'yakov, G.V. Romanenko, A.S. Bogomyakov, R.Z. Sagdeev, V.I. Ovcharenko. *Russ. Chem. Bull.*, **2013**, *62*, 661–671. https://doi.org/10.1007/s11172-013-0089-y
- S.E. Tolstikov, N.A. Artiukhova, G.V. Romanenko, A.S. Bogomyakov, E.M. Zueva, I.Y. Barskaya, M.V. Fedin, K.Y. Maryunina, E.V. Tretyakov, R.Z. Sagdeev, V.I. Ovcharenko. *Polyhedron*, 2015, 100, 132–138. https://doi.org/10.1016/j.poly.2015.07.029
- V.I. Ovcharenko, S.V. Fokin, E.T. Kostina, G.V. Romanenko, A.S. Bogomyakov, E.V. Tretyakov. *Inorg. Chem.*, 2012, 51, 12188–12194. https://doi.org/10.1021/ic301328x

- V. Ovcharenko, S. Fokin, E. Chubakova, G. Romanenko, A. Bogomyakov, Z. Dobrokhotova, N. Lukzen, V. Morozov, M. Petrova, M. Petrova, G. Levkovskaya, R. Sagdeev. *Inorg. Chem.*, 2016, 55, 5853–5861. https://doi.org/10.1021/acs.inorgchem.6b00140
- K.Y. Maryunina, X. Zhang, S. Nishihara, K. Inoue, V.A. Morozov, G.V. Romanenko, V.I. Ovcharenko. J. Mater. Chem. C, 2015, 3, 7788–7791. https://doi.org/10.1039/C5TC01005E
- V. Ovcharenko, G. Romanenko, A. Polushkin, G. Letyagin, A. Bogomyakov, M. Fedin, K. Maryunina, S. Nishihara, K. Inoue, M. Petrova, V. Morozov, E. Zueva. *Inorg. Chem.*, 2019, 58, 9187–9194. https://doi.org/ 10.1021/acs.inorgchem.9b00815
- E.T. Chubakova. Sintez, stroenie i svoistva geyerospinovykh kompleksov bis(geksaftoratsetilatsetonato) medi(II) s novymi pirazolil-zameshchennymi nitroksil'nymi radikalami (Synthesis, Structure, and Properties of Heterospin Complexes of bis(Hexafluoroacetylacetonato) Copper(II) with New Pyrasolyl-Substituted Nitroxyl Radicals): Cand. (Chem.) Dissertation. Novosibirsk: Nikolaev Institute of Inorganic Chemistry, 2014. (In Russ.)
- V.I. Ovcharenko, S.V. Fokin, G.V. Romanenko, I.V. Korobkov, P. Rey. Russ. Chem. Bull., 1999, 48, 1519– 1525. https://doi.org/10.1007/BF02496404
- 12. G.V. Romanenko, S.V. Fokin, S.F. Vasilevskii, E.V. Tret'yakov, Y.G. Shvedenkov, V.I. Ovcharenko. *Russ. J. Coord. Chem.*, **2001**, *27*, 360–367. https://doi.org/10.1023/A:1011354314831
- V. Ovcharenko, S. Fokin, E. Chubakova, G. Romanenko, A. Bogomyakov, Z. Dobrokhotova, N. Lukzen, V. Morozov, M.M. Petrova, M.M. Petrova, E. Zueva, I. Rozentsveig, E. Rudyakova, G. Levkovskaya, R. Sagdeev. *Inorg. Chem.*, 2016, 55, 5853–5861. https://doi.org/10.1021/acs.inorgchem.6b00140
- 14. G.M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3–8. https://doi.org/10.1107/S20532733 14026370
- G.M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8. https://doi.org/10.1107/S20532296 14024218
- E.V. Tretyakov, V.I. Ovcharenko. Russ. Chem. Rev., 2009, 78, 971–1012. https://doi.org/10.1070/RC2009 v078n11ABEH004093
- C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2016, 72, 171–179. https://doi.org/10.1107/S2052520616003954
- S. Fokin, V. Ovcharenko, G. Romanenko, V. Ikorskii. *Inorg. Chem.*, 2004, 43, 969–977. https://doi.org/ 10.1021/ic034964d
- E.M. Zueva, E.R. Ryabykh, A.M. Kuznetsov. Russ. Chem. Bull., 2009, 58, 1654–1662. https://doi.org/ 10.1007/s11172-009-0228-7
- V.I. Ovcharenko, G.V. Romanenko, K.Y. Maryunina, A.S. Bogomyakov, E.V. Gorelik. *Inorg. Chem.*, 2008, 47, 9537–9552. https://doi.org/10.1021/ic8011074
- 21. V.A. Morozov, M.V. Petrova, N.N. Lukzen. AIP Adv., 2015, 5, 087161. https://doi.org/10.1063/1.4929526