2023. Том 64, № 7

Июль

112774 (C. 1–6)

КРИСТАЛЛЫ ТВЕРДОГО РАСТВОРА (Y_{1-x}Eu_x)₂O₃: РОСТ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Р.Е. Николаев¹, А.М. Яковлева^{1,2}, М.С. Тарасенко¹, А.С. Сухих¹, В.А. Трифонов¹, Н.Г. Наумов¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: naumov@niic.nsc.ru, tarasen@niic.nsc.ru ²Новосибирский государственный университет, Новосибирск, Россия

Статья поступила	С доработки	Принято к публикации
24.04.2023	03.05.2023	03.05.2023

Методом роста из раствора-расплава выращены монокристаллы твердого раствора соединения ($Y_{1-x}Eu_x$)₂O₃ со структурой биксбиита и разным содержанием европия, пригодные для структурного анализа. Структурные данные показывают, что распределение Y/Eu по независимым позициям в кристалле равномерное, нет предпочтительного заполнения позиций европием. Среднее расстояние *R*—O в изученных кристаллах также близко для атомов редкоземельного металла, находящихся в разных кристаллографических позициях, и монотонно растет с увеличением содержания европия в кристалле. Коэффициент вхождения европия из раствора-расплава заметно меньше единицы, что приводит к обогащению кристалла иттрием по сравнению с раствором-расплавом.

DOI: 10.26902/JSC_id112774 EDN: CNUWXR

Ключевые слова: иттрий, европий, твердый раствор, кристаллическая структура.

введение

Оксидные люминесцентные материалы, активированные редкоземельными ионами, привлекают внимание в связи с низкой энергией фононов, высокой эффективностью фотолюминесценции и высокой химической и термической стабильностью. Благодаря этим свойствам они широко используются в различных областях промышленности для визуализации жесткого излучения, электронно-лучевых приборов, лазеров, ап-конвертеров и т.д. Оксиды редкоземельных элементов (P3Э) (Y₂O₃, La₂O₃, Gd₂O₃) – относятся к группе широкозонных (ширина запрещенной зоны > 3 эВ) полупроводниковых материалов и могут быть очень эффективными матрицами для оптически активных ионов лантанидов, поскольку прозрачны для видимого и инфракрасного (ИК) излучения и не имеют низких энергетических уровней. По этой причине Y₂O₃, La₂O₃, Gd₂O₃, actual definition of the state of the st

Все полуторные оксиды обладают широким спектральным диапазоном прозрачности от 200 нм до 8000 нм и сравнительно низкими максимальными энергиями фононов (порядка 600 см⁻¹), что делает их подходящими матрицами для лазерных кристаллов вплоть до среднего инфракрасного спектрального диапазона. Оксиды РЗЭ имеют высокую теплопроводность (она остается практически неизменной при легировании тяжелыми редкоземельными ионами) и обладают температурой плавления, превышающей 2400 °C, что эмпирически указывает на высо-

[©] Николаев Р.Е., Яковлева А.М., Тарасенко М.С., Сухих А.С., Трифонов В.А., Наумов Н.Г., 2023

кую химическую и механическую стабильность [1–3], но значительно усложняет получение этих материалов в виде крупных монокристаллов.

Множество работ по изучению люминофоров красного свечения на основе оксидных соединений легированных Eu³⁺ выполнены на поликристаллических материалах и наночастицах (см. например, обзоры [4–6]). Небольшое количество исследований на монокристаллах обусловлено сложностями их получения из-за высоких температур плавления [3, 7–10] и наличия нескольких фазовых переходов [1, 8]. Показано, что высокотемпературный метод для роста кристаллов оксидов из расплава (Чохральского) для оксидов РЗЭ применяется ограниченно [3, 9, 10].

Найденный новый растворитель Li₆*R*B₃O₉ привел к появлению серии работ по росту кристаллов из раствора-расплава Li₆*R*B₃O₉ [11–14]. Таким методом выращен кристалл Tb₂O₃ и исследованы его магнитные свойства – константа Вердэ [13]. Из боратного растворителя выращивали кристаллы размером несколько милиметров R_2O_3 :Yb, R = Y, Lu [12]. Получены монокристаллы Y_{1.866}Eu_{0.134}O₃, в которых коэффициент вхождения европия составил 0.67, и монокристалл Lu_{1.56}Gd_{0.41}Eu_{0.03}O₃ с коэффициентами вхождения гадолиния 0.43 и европия 0.3 [14].

В настоящей работе мы исследовали возможность роста кристаллов оксида иттрия, допированного европием с разной концентрацией допанта в растворе-расплаве $Li_6RB_3O_9$, R = Y, Eu. Были получены кристаллы кубического $(Y,Eu)_2O_3$, изучена их кристаллическая структура и определен коэффициент вхождения европия в матрицу Y_2O_3 в условиях эксперимента.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Монокристаллы (Y,Eu)₂O₃ выращены методом спонтанной кристаллизации из растворарасплава Li₆*R*B₃O₉ с добавлением 20 мол.% смеси оксидов иттрия–европия в атмосфере аргона. Синтез проводили в два этапа из H₃BO₃, Li₂CO₃, Y₂O₃ Eu₂O₃ квалификации ОСЧ. Первый этап – нагрев на воздухе до 400 °C со скоростью 5 °C/ч. Второй этап нагрев в атмосфере аргона до температуры 1180 °C со скоростью 80 °C/ч. Затем раствор-расплав выдерживали при температуре 1180 °C в течение 48 ч. При данных условиях раствор-расплав был пересыщенным, т.е. на дне тигля находится осадок (Y,Eu)₂O₃. Для укрупнения кристаллов использовали процедуру циклирования в диапазоне температуры 1180–1145 °C. Скорость на этапе охлаждения была 1 °C/ч, на этапе нагрева 5 °C/ч. В каждом опыте было сделано по 5 циклов охлаждения—нагрева. После завершения операции циклирования печь охлаждали до комнатной температуры со скоростью 80 °C/час. Соотношение Y/Eu в опытах приведены в табл. 1.

В условиях эксперимента вырастало большое число прозрачных изометричных кристаллов (Y,Eu)₂O₃ размером 0.3–1.0 мм, расположенных в нижней части остывшего спека. Отмывание от боратного расплава проводилось разбавленной (10 %) соляной кислотой. Кристаллы для рентгеноструктурного анализа и микрозондовых исследований отбирались из массы вещества.

Соотношение Y:Eu в образцах определяли методом электронно-зондового рентгеноспектрального микроанализа на приборе JXA-8100. Для проведения анализа из кристаллов оксидов иттрия—европия, отмытых от растворителя в 10 % растворе соляной кислоты, была отобрана крупная фракция с раземером зерен более 300 мкм. Съемку проводили на плоскополированном шлифе. В качестве стандартов для иттрия и европия использовали фосфаты иттрия и европия. Для получения среднего значения состава в каждом образце проанализировали десять кристаллов, на каждом из которых было получено по десять точек. Данные по среднему составу кристаллов в синтезах приведены в табл. 2.

Дифракционные данные для монокристаллов (Y,Eu)₂O₃ получены с использованием монокристального дифрактометра Bruker D8 Venture (Mo K_{α} микрофокусный источник рентгеновского излучения Incoatec IµS 3.0, трехкружный гониометр, CPAD детектор Photon III C14). Температура монокристаллов в процессе съемки поддерживалась равной 150(1) К при помощи потокового азотного криостата Oxford Cryosystems Cryostream 800 plus. Стратегия съемки состояла из одного стандартного ω -скана с шириной фрейма равной 0.5°. Расчет стратегии съемки, интегрирование дифракционных данных, введение поправки на поглощение были выполнены в па-

Таблица 1

Параметр	1	2	3	4
Брутто-формула	$O_2 Y_2$	FiloscO2V1 of	F110 21 O2Y1 70	F_{110} (2 O_2 Y) 20
Молярная масса, г/моль	225.82	229.60	239.06	264.64
Сингония	Кубическая	Кубическая	Кубическая	Кубическая
Пространственная группа	Ia 3	Ia 3	$Ia\overline{3}$	Ia 3
a, Å	10.6049(2)	10.6177(2)	10.6391(2)	10.6878(1)
V, Å ³	1192.67(7)	1196.99(7)	1204.24(7)	1220.86(3)
Ζ	16	16	16	16
$ρ_{\rm выч}$, $Γ/cm^3$	5.031	5.096	5.274	5.759
μ , mm ⁻¹	38.499	38.448	38.435	38.497
F(000)	1632	1655	1713	1868
Размер кристалла, мм	$0.09 \times 0.07 \times 0.04$	0.10×0.08×0.05	0.08×0.07×0.02	0.07×0.07×0.07
Область сбора данных по θ , град.	3.84-33.13	3.84-33.08	3.830-33.009	2.696-36.102
Интервалы индексов отражений	$-16 \le h \le 9,$	$-6 \le h \le 16,$	$-15 \le h \le 13$	$-17 \le h \le 10,$
	$-12 \le k \le 14,$	$-15 \le k \le 8,$	$-9 \le k \le 16$	$-15 \le k \le 17$,
	$-16 \le l \le 8$	$-14 \le l \le 10$	$-15 \le l \le 16$	$-16 \le l \le 13$
Отражений измеренных / незави- симых	2385 / 386	2129 / 385	4223 / 385	4599 / 496
R _{int}	0.0488	0.0291	0.0404	0.0267
Число ограничений / уточняемых параметров	0 / 18	0 / 20	0 / 20	0 / 20
Коэффициент экстинкции	0.00151(15)	0.00070(3)	0.00090(8)	0.00057(8)
GOOF по F^2	1.093	1.107	1.140	1.219
$R\left(I > 2\sigma(I)\right)$	$R_1 = 0.0208$	$R_1 = 0.0144$	$R_1 = 0.0120$	$R_1 = 0.0121$
	$wR_2 = 0.0463$	$wR_2 = 0.0271$	$wR_2 = 0.0221$	$wR_2 = 0.0233$
R (BCe Fhkl)	$R_1 = 0.0220$	$R_1 = 0.0150$	$R_1 = 0.0129$	$R_1 = 0.0111$
	$wR_2 = 0.0466$	$wR_2 = 0.0272$	$wR_2 = 0.0222$	$wR_2 = 0.0234$
Остаточная электронная плотность (min / max), е/Å ³	-0.743 / 1.074	-0.498 / 0.623	-0.462 / 0.454	-0.729 / 0.941
CCDC №	2256963	2256964	2256966	2256967

Кристаллографические данные и детали эксперимента

Таблица 2

Данные по составу загрузки и кристаллов $Y_{2-x}Eu_xO_3$

	0	5.00	10.00	25.00	50.00
Содержание европия в загрузке, 76	0	5.00	10.00	25.00	50.00
Содержание европия в кристаллах, %	0	2.6	5.4	15.5	35.4

кете программ APEX3 v.2019.1-0 (SAINT 8.40a, SADABS-2016/2, RLATT) [15]. Полученные *hklF* массивы обрабатывались в программе Olex2 v.1.5 [16], с применением SHELXT v.2018/2 [17] и SHELXL v.2018/3 [18] соответственно для расшифровки и уточнения структурной модели. Коэффициент экстинкции уточнялся с использованием инструкции EXTI (SHELXL-2018/3) для каждой структурной модели.

Кристаллические данные, сбор данных и детали уточнения структуры перечислены в табл. 2. Для позиций Y³⁺/Eu³⁺ предполагалось полная занятость позиции, при этом сумма коэффициентов занятости каждой позиции ограничена единицей. Координаты и тепловые колебания атомов Y³⁺/Eu³⁺, занимающих одну позицию, приняты одинаковыми (инструкции EYXZ и EADP в SHELXL). Полный набор структурных данных депонирован в Кембриджский центр кристаллографических данных (CCDC) под номерами 2256963–2256967 и может быть скачан по адресу www.ccdc.cam.ac.uk/structures, а также доступен у авторов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Из каждого синтеза отобраны по 10 кристаллов, состав которых определен методом микрозонда. Анализ состава кристаллов твердых растворов $(Y_{1-x}Eu_x)_2O_3$, полученных в расплаве $Li_6RB_3O_9$, R = Y, Eu, показал, что содержание европия в кристаллах одного синтеза близко. В то же время содержание в кристаллах заметно отличается от стехиометрии загрузки (табл. 2). Такие значения концентраций европия в кристаллах в сравнении с загрузкой показывают, что коэффициент вхождения европия из раствора-расплава $Li_6RB_3O_9$, R = Y, Eu заметно меньше единицы, что приводит к обогащению кристалла иттрием по сравнению со стехиометрией загрузки.

Для серии выращенных кристаллов твердых растворов оксидов иттрия (III) и европия (III) проведен рентгеноструктурный анализ с кристаллографическим уточнением заселенности в позициях катионов. По данным структурного анализа все изученные кристаллы формируются в пространственной группе $Ia\overline{3}$ и имеют структуру биксбиита. В структуре кристаллографически независимые ионы РЗЭ занимают две позиции: центросимметричную C_{3i} (.-3.) и нецентросимметричную C_2 (2..). На рис. 1 показаны координационные окружения катионов Y/Eu, в обоих случаях координационное число равно 6. Координационное окружение для позиции C_{3i} можно описать как тригональную антипризму, сдавленную вдоль оси 3, а для позиции C_2 – как сильно искаженный октаэдр. Дистанции и заселенности для каждой позиции приведены в табл. 3.

Анализ уточненных заселенностей позиций (C_{3i}) и (C_2) показывает, что в условиях роста кристаллов из раствора-расплава атомы европия входят равновероятно в обе позиции. Такое равномерное распределение согласуется с данными, обобщенными в обзоре [20] и основанными на спектрометрическом исследовании *f*-*f* переходов в ионах примесных РЗЭ.

Следует отметить, что средние расстояния *R*1—O1 и *R*2—O1 во всех исследованных кристаллах практически равны, что еще раз подтверждает равномерность распределения европия в кристаллах кубического оксида иттрия.

На рис. 2 приведена зависимость объема элементарной ячейки кристаллов $Y_{2-x}Eu_xO_3$ от содержания европия. Видно, что при увеличении этого содержания объем монотонно растет, что хорошо согласуется с большим атомным радиусом Eu (0.947 Å, KЧ = 6 [21]) по сравнению с Y (0.900 Å, KЧ = 6 [21]). Полученная зависимость косвенно подтверждает, что европий находится в степени окисления +3, так как в случае Eu⁺², имеющего больший радиус, кривая зависимости была бы более крутой.

Puc. 1. Координационное окружение Y/Eu1 (C_{3i}) и Y/Eu2 (C_2) в Y_{1.04}Eu_{0.96}O₃ в тепловых эллипсоидах 99 % вероятности

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ. 2023. Т. 64, № 7, 112774

Таблица 3

		=			<u> </u>
Монокристалл (номера по табл. 1, по публикации)	x Eu	s.o.f. Eu (<i>C</i> _{3<i>i</i>})	s.o.f. Eu (C ₂)	R —O, Å (C_{3i})	R —O, Å (C_2)
1	_		_	$6 \cdot 2.282(2)$	$2 \cdot 2.249(2)$
				0 2.202(2)	$2 \cdot 2.270(2)$
					$2 \cdot 2.330(2)$
2	0.06	0.029(8)	0.031(7)	6.2.285(1)	2.2.249(1)
					2.2.273(1)
					2.2.337(1)
3	0.21	0.098(7)	0.107(7)	6.2.290(1)	$2 \cdot 2.251(1)$
					$2 \cdot 2.281(1)$
					2.2340(1)
4	0.62	0.297(9)	0.312(9)	6.2.299(1)	$2 \cdot 2.263(1)$
					$2 \cdot 2.290(1)$
					2.2.351(1)
[19]	-	—	_	6.2.304	2.2287
					2.2342
					2.425
	1225 -	4			
	1220 -	-		<u> </u>	
	1215.	-			
	S⊋ 1210•	-			
	⊨ ⁻ 1205-				
	1200 -				
	1195 ·				
	1190				
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 $x \text{ in } Y_{2-x} \text{Eu}_x \text{O}_3$					
			_ ~ ~ ~ <i>_</i>		

Содержание европия в кристаллах, заселенность европия и расстояния *R*—О для разных позиций Y_{2-x}Eu_xO₃

Рис. 2. Зависимость объема элементарной ячейки кристаллов Y_{2-x}Eu_xO₃ от состава

Таким образом, из раствора-расплава смеси $Li_6RB_3O_9$ и R_2O_3 (R = Y, Eu) выращены смешанные кристаллы кубического (Y,Eu)₂O₃ с разным содержанием европия и изучена их кристаллическая структура. Структурные данные показывают, что распределение Y/Eu по независимым позициям в кристалле равномерное, нет предпочтительного заполнения позиций европием. Среднее расстояние R—O в изученных кристаллах также близко для атомов редкоземельного металла, находящихся в разных кристаллографических позициях, и монотонно растет с увеличением содержания европия в кристалле. Коэффициент вхождения европия из растворарасплава заметно меньше единицы, что приводит к обогащению по сравнению с растворомрасплавом кристалла иттрием.

Работа выполнена при поддержке Российского научного фонда (проект № 22-43-02079). Авторы благодарят Министерство науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- C. Kränkel, A. Uvarova, C. Guguschev, S. Kalusniak, L. Hülshoff, H. Tanaka, D. Klimm. Rare-earth doped mixed sesquioxides for ultrafast lasers [Invited]. *Opt. Mater. Express*, 2022, 12(3), 1074. https://doi.org/ 10.1364/ome.450203
- 2. C. Krankel. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range. *IEEE J. Sel. Top. Quantum Electron.*, **2015**, *21*(1), 250–262. https://doi.org/10.1109/jstqe. 2014.2346618
- C. Kränkel, A. Uvarova, É. Haurat, L. Hülshoff, M. Brützam, C. Guguschev, S. Kalusniak, D. Klimm. Czochralski growth of mixed cubic sesquioxide crystals in the ternary system Lu₂O₃—Sc₂O₃—Y₂O₃. *Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater.*, 2021, 77(4), 550–558. https://doi.org/10.1107/s20525 20621005321
- 4. K. Van den Eeckhout, P.F. Smet, D. Poelman. Persistent luminescence in Eu²⁺-doped compounds: A review. *Materials*, **2010**, *3*(4), 2536–2566. https://doi.org/10.3390/ma3042536
- Y. Wang, J. Ding, Y. Wang, X. Zhou, Y. Cao, B. Ma, J. Li, X. Wang, T. Seto, Z. Zhao. Structural design of new Ce³⁺/Eu²⁺-doped or co-doped phosphors with excellent thermal stabilities for WLEDs. *J. Mater. Chem. C*, 2019, 7(7), 1792–1820. https://doi.org/10.1039/c8tc06013d
- X. Qin, X. Liu, W. Huang, M. Bettinelli, X. Liu. Lanthanide-activated phosphors based on 4*f*-5*d* optical transitions: theoretical and experimental aspects. *Chem. Rev.*, 2017, *117*(5), 4488–4527. https://doi.org/10.1021/acs.chemrev.6b00691
- J. Zheng, C. Liu, H. Yu, L. Chen, M. Yang, H. Zhao, B. Lu, F. Yang, H. Feng. Single crystal preparation and luminescent properties of Lu₂O₃:Eu scintillator by vertical Bridgman method. *Cryst. Res. Technol.*, 2022, 57(2), 2100120. https://doi.org/10.1002/crat.202100120
- 8. R.C. Pastor, A.C. Pastor. Crystal growth above 2200 °C by the Verneuil method. *Mater. Res. Bull.*, **1966**, *1*(4), 275–282. https://doi.org/10.1016/0025-5408(66)90013-4
- L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber. New oxide crystals for solid state lasers. *Cryst. Res. Technol.*, 1999, 34(2), 255–260. https://doi.org/10.1002/(sici)1521-4079(199902)34:2<255::aid-crat255> 3.0.co;2-u
- L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber. Czochralski growth and laser parameters of RE³⁺doped Y₂O₃ and Sc₂O₃. *Ceram. Int.*, **2000**, *26*(6), 589–592. https://doi.org/10.1016/s0272-8842(99)00101-7
- 11. P. Veber, M. Velazquez, J.-P. Chaminade, O. Viraphong. Procédé de Préparation de Sesquioxydes Cubiques Monocristallins et Leurs Applications. Patent 0957772, **2011**.
- P. Veber, M. Velázquez, V. Jubera, S. Péchev, O. Viraphong. Flux growth of Yb³⁺-doped RE₂O₃ (RE = Y, Lu) single crystals at half their melting point temperature. *CrystEngComm*, **2011**, *13*(16), 5220. https://doi.org/10.1039/c1ce00015b
- P. Veber, M. Velázquez, G. Gadret, D. Rytz, M. Peltz, R. Decourt. Flux growth at 1230 °C of cubic Tb₂O₃ single crystals and characterization of their optical and magnetic properties. *CrystEngComm*, 2015, 17(3), 492–497. https://doi.org/10.1039/c4ce02006e
- P. Veber, M. Velazquez, P.-A. Douissard, T. Martin, O. Plantevin, R. Belhoucif. Flux growth and physical properties characterizations of Y_{1.866}Eu_{0.134}O₃ and Lu_{1.56}Gd_{0.41}Eu_{0.03}O₃ single crystals. *Opt. Mater. Express*, 2016, 6(1), 207. https://doi.org/10.1364/ome.6.000207
- 15. APEX3 (v.2019.1-0). Madison, Wisconsin, USA: Bruker AXS Inc., 2019.
- O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.*, 2009, 42(2), 339–341. https://doi.org/10.1107/ s0021889808042726
- 17. G.M. Sheldrick. SHELXT Integrated space-group and crystal-structure determination. *Acta Crystallogr.*, *Sect. A: Found. Adv.*, **2015**, *71*(1), 3–8. https://doi.org/10.1107/s2053273314026370
- G.M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3–8. https://doi.org/10.1107/s2053229614024218
- A. Saiki, N. Ishizawa, N. Mizutani, M. Kato. Structural change of C-rare earth sesquioxides Yb₂O₃ and Er₂O₃ as a function of temperature. *J. Jpn. Ceram. Assoc.*, **1985**, *93*(1082), 649–654. https://doi.org/10.2109/jcersj 1950.93.1082_649
- C.R. Stanek, K.J. McClellan, B.P. Uberuaga, K.E. Sickafus, M.R. Levy, R.W. Grimes. Determining the site preference of trivalent dopants in bixbyite sesquioxides by atomic-scale simulations. *Phys. Rev. B*, 2007, 75(13), 134101. https://doi.org/10.1103/physrevb.75.134101
- 21. R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr., Sect. A*, **1976**, *32*(5), 751–767. https://doi.org/10.1107/s0567739476001551