2024. Том 65, № 10

Октябрь

133019 (C. 1–10)

ВЛИЯНИЕ НЕКОВАЛЕНТНЫХ ВЗАИМОДЕЙСТВИЙ НА ПРОЧНОСТЬ СВЯЗЫВАНИЯ ЛАМИВУДИНА С ДИСУЛЬФИДОМ МОЛИБДЕНА В МНОГОСЛОЙНОЙ И ОДНОСЛОЙНОЙ ГИБРИДНЫХ СТРУКТУРАХ

А.С. Головешкин, И.Е. Ушаков, Р.У. Таказова, Н.Д. Лененко, А.С. Голубь

Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия E-mail: golov-1@mail.ru

Статья поступила	С доработки	Принята к публикации
24.04.2024	20.05.2024	21.05.2024

Методом монослоевого диспергирования получено слоистое соединение дисульфида молибдена с катионными молекулами лекарственного средства ламивудин (Lam). Строение соединения установлено в результате моделирования порошковой дифрактограммы методом сверхъячейки и последующей квантово-химической оптимизации структурной модели методом функционала электронной плотности. С помощью топологического анализа расчетного распределения электронной плотности в рамках теории «атомы в молекулах» (AIM) выявлены связывающие межатомные взаимодействия между Lam и монослоями MoS₂ и оценены их энергии. Показано, что доминирующую роль во взаимодействии играют водородные связи NH···S между Lam и сульфидным слоем, именно они определяют положение молекул в межслоевом пространстве MoS₂. С использованием расчетной модели расслоенного соединения установлены особенности связывания Lam с поверхностью монослойных частиц MoS₂.

DOI: 10.26902/JSC_id133019 EDN: KLFDZI

Ключевые слова: дисульфид молибдена, гибридные соединения, порошковая рентгеновская дифракция, квантово-химические расчеты, нековалентные взаимодействия.

введение

Дисульфид молибдена (MoS₂) – один из наиболее известных 2D материалов [1, 2]. Его кристаллы состоят из элементарных слоев (S—Mo—S), соединенных друг с другом ван-дер-ваальсовыми связями S—S [3]. Такое строение позволяет расслаивать кристаллы MoS₂ и получать высокодисперсные материалы на его основе [2], в том числе гибридные, содержащие органические вещества, функционализирующие сульфидные слои. Гибридные материалы на базе MoS₂ применяются в таких областях как катализ [4–6], наноэлектроника [7, 8], сенсоры [9], медицина [10, 11]. Например, наносистемы на основе MoS₂ представляют интерес для создания чувствительных биосенсоров к антигену гепатита В [9, 12]. В случае медицинского использования важное значение имеет способность частиц MoS₂ поглощать излучение ближнего ИК диапазона, которое легко проникает через кожу и ткани живых организмов [13, 14], и эффективно трансформировать его в тепло. Это дает возможность применять гибридные соединения MoS₂ в фототермической и/или фотодинамической терапии вирусных и бактериальных инфекций [15, 16], а также в противоопухолевой терапии [11, 17]. Особенно перспективно использование органо-

[©] Головешкин А.С., Ушаков И.Е., Таказова Р.У., Лененко Н.Д., Голубь А.С., 2024

неорганических систем, имеющих в своем составе как MoS₂, так и лекарственное соединение, что позволяет получить синергический эффект от их совместного применения [18–20].

Для направленного получения таких систем особенно важно знание параметров связывания лекарственных соединений с монослоями MoS_2 . Обычно оно реализуется через систему нековалентных взаимодействий различной силы, как установлено на примере соединений MoS_2 с антисептиком мирамистином [21] и противолейкозным цитостатическим препаратом иматинибом [22]. Для расчета характеристик связывания в этих системах использованы данные о строении соответствующих гетерослоистых соединений MoS_2 , в которых органические молекулы встроены между слоями MoS_2 . Важно, что структурные модели подобных слоистых соединений могут применяться также для конструирования расслоенных структур, которые позволяют моделировать взаимодействия на поверхности монослоевых частиц [22, 23].

Ламивудин (4-амино-1-[(2R,5S)-2-(гидроксиметил)-1,3-оксатиолан-5-ил]-1,2-дигидропиримидин-2-он) (Lam) – соединение, активное в отношении ВИЧ и гепатита В, кроме того, он может применяться в лечении новообразований [24, 25]. В настоящей работе с использованием монослоевого диспергирования MoS₂ [26] мы получили соединение Lam–MoS₂ и изучили его строение с помощью данных порошковой рентгеновской дифракции и квантово-химического моделирования, что позволило выявить типы и силу связывающих взаимодействий между компонентами в гетерослоистом кристалле и его расслоенной модели.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Слоистое соединение MoS₂ с катионами протонированного ламивудина состава $(LamH)_{0.18}MoS_2$ получено в результате взаимодействия отрицательно заряженных слоев MoS₂, содержащихся в монослоевых дисперсиях LiMoS₂, с катионами LamH⁺ по методу, использованному ранее для получения слоистых соединений MoS₂ с органическими катионами [21, 27]. Для этого сначала получали соединение LiMoS₂ обработкой природного порошкообразного MoS₂ (марки ДМ-1, Скопинский завод) избытком 1.6 М раствора *н*-бутиллития в гексане (Aldrich) при 20 °С в течение одной недели с последующей промывкой гексаном и высушиванием в вакууме. Затем диспергировали LiMoS₂ в бидистиллированной воде (1 г/л) в атмосфере аргона при ультразвуковой обработке. К 150 мл полученной дисперсии, содержащей MoS₂ (0.144 г, 0.9 ммоль), добавляли 20 мл солянокислого водного раствора с ламивудином (0.103 г, 0.45 ммоль) (Sigma-Aldrich). Реакционную смесь (pH 2.5) перемешивали на магнитной мешалке в течение 1 ч, образовавшийся осадок соединения отфильтровывали, промывали два раза водой и высушивали в вакууме. Состав соединения определяли по данным объемного элементного анализа. Содержание элементов C, H, N определяли методом сжигания (экспресс-гравиметрия), а Мо – методом рентгенофлуоресцентного анализа с помощью спектрометра Спектроскан МАКС-GVM (НПО Спектрон). Найдено для Lam-MoS₂ (%): С 8.79, Н 1.23, N 3.58, Мо 48.91. Вычислено для (C₈H₁₂N₃O₃S)_{0.18}MoS₂ (%): C 8.55, H 1.07, N 3.74, Mo 50.30.

Дифрактометрическое исследование свежеполученного соединения проводили с использованием дифрактометра Bruker D8 Advance (Bruker AXS), оснащенного рентгеновской трубкой с медным анодом, никелевым фильтром и позиционно чувствительным детектором Lynx-Eye, в геометрии пропускания рентгеновского излучения через образец. Шаг съемки 0.02° 20, интервал съемки 5–65° 20. Согласно дифрактометрическим данным структура соединения не подвергалась изменениям по крайней мере в течение месяца. Структурное моделирование выполнено по пространственной группе *P*1. Для определения положения Lam в межслоевом пространстве MoS₂ применяли метод симуляции отжига в программе TOPAS 5 [28]. Координаты атомов и другие параметры структуры депонированы в Кембриджском банке структурных данных (ССDС № 2350868).

Квантово-химический расчет проводили с помощью программы VASP версия 5.4 [29, 30]. Оптимизация координат атомов выполнена с использованием обменно-корреляционного функционала PBE и базисного набора плоских волн (максимальная кинетическая энергия – 545 эВ) и дисперсионной поправки (DFT-D3) [31], параметры ячейки не оптимизировались. Для описания остовных электронов применялись «жесткие» потенциалы PAW (projected augmented wave)

[32] (размер области описываемой псевдоволновой функции наименьший). Набор *k*-точек генерировался по методу Монкхорста – Пака с радиусом обрезания 20 Å. Для расчетов слоистого соединения и расслоенной модели размерность сетки *k*-точек составляла $3 \times 2 \times 2$ и $3 \times 2 \times 1$ соответственно. Релаксация структур проводилась методом сопряженных градиентов до тех пор, пока значение остаточных сил, действующих на атомы, не становилась меньше 0.01 эB/Å, а изменение полной энергии системы при электронных итерациях меньше 10^{-6} эВ. Топологический анализ расчетной функции электронной плотности выполнен с помощью программы AIM входящей в комплекс программ ABINIT [33] с использованием значения максимальной кинетической энергии 1000 эВ.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для установления структуры соединения LamH–MoS₂ нами применен комбинированный подход, успешно использованный ранее для ряда других слоистых соединений MoS_2 с органическими молекулами [34]. Он основан на уточнении методом Ритвельда дифрактограммы турбостратно-разупорядоченной системы с помощью сверхъячейки Уфера [35]. Частично-заселенные позиции органического катиона, найденные при таком уточнении, используются для конструирования модели периодической структуры, которая может быть далее оптимизирована методами квантовой химии. Дифрактограмма полученного соединения LamH–MoS₂ приведена на рис. 1.

Стартовая модель структуры LamH–MoS₂ сконструирована на основе 1Т модификации MoS_2 [1, 36], поскольку соответствующая структура сульфидного слоя выявлена ранее в гибридных соединениях MoS_2 , выделенных аналогичным методом [34, 37]. В 1Т–MoS₂ атомы молибдена образуют зигзаги и имеют искаженно-октаэдрическое окружение из атомов серы, которые формируют гофрированную поверхность сульфидного слоя с выступами и углублениями, распространяющимися в том же направлении, что и зигзаги Мо—Мо.

Молекула Lam (рис. 2) содержит шестичленный ароматический дигидропимидиноновый и пятичленный алифатический оксатиолановый циклы, соединенные связью N—C. Согласно данным Кембриджского банка структурных данных, молекула Lam имеет непланарную форму [38]. Протонирование молекулы с образованием катиона (LamH) происходит по атому азота, ближайшему к аминогруппе. Конформационная свобода Lam обусловлена взаимным вращением циклов вокруг связи N—C, а также вращением гидроксиметильного заместителя в алифатическом цикле вокруг связи С—C.

Рис. 1. Экспериментальная (синий) и расчетная (красный) (см. эл. версию) дифрактограммы LamH–MoS₂, а также их разностная кривая (серый), $R_{wp} = 2.08$ % (см. эл. версию)

Рис. 2. Химическая структура ламивудина

Положение ароматического фрагмента Lam относительно сульфидных слоев в стартовой модели было задано наиболее благоприятным для сближения катионного азотного центра с отрицательно заряженным сульфидным слоем. Такое расположение типично для интеркалированных в MoS₂ катионов [27, 34, 39] и подразумевает образование молекулами Lam связей NH···S с сульфидным слоем. Соответствующая конформация Lam выбрана на основе первичного моделирования дифрактограммы с учетом ограничений на формирование неправдоподобно коротких контактов между катионом и сульфидными слоями. Однако стоит отметить, что объем информации, которую дают дифрактограммы слоистых материалов, часто недостаточен для установления всех деталей структуры [40], что особенно характерно для турбостратной упаковки. Поэтому для более детального определения мотива упаковки Lam между слоями MoS₂ на основе выбранной конформации было сконструировано нескольких моделей, которые различались расположением катионов относительно нанорельефа слоев MoS₂ (связыванием с атомами серы на выступах или в углублениях на поверхности) и сдвигом этих слоев относительно друг друга (рис. 3). Все модели имели одинаковый, близкий к экспериментальному состав (LamH)_{1/6}MoS₂, позволяющий получить плотную упаковку молекул в органическом слое при отсутствии нереалистично коротких межмолекулярных контактов. Каждая модель позволяла достаточно хорошо описать дифрактограмму, поэтому для их дискриминации проведены квантово-химические расчеты с периодическими граничными условиями в программе VASP, такие расчеты достаточно широко используется при изучении слоистых материалов [41–43]. Расчеты показали, что наиболее выгодной является модель 3: в ней образуются водородные связи OH···S и NH···S с атомами серы в углублениях нанорельефа, причем соответствующие протонодонорные группы Lam координированы на один сульфидный слой (рис. 3).

Энергия альтернативной модели 1 со связыванием Lam с выступами MoS_2 несколько более высокая (+1.8 ккал/моль) (табл. S1, Supplementary Materials*). Варьирование относительного

Рис. 3. Модели расположения катионов LamH в межслоевом пространстве MoS_2 . Атомы серы, относящиеся к выступам и впадинам нанорельефа, обозначены серой и черной обводкой соответственно

^{*} Supplementary materials для этой статьи доступны для авторизованных пользователей по ссылке doi 10.26902/JSC id133019.

сдвига соседних слоев MoS_2 также приводит к небольшим изменениям энергии системы. Так, различие энергий моделей **2** и **3** составляет 1.5 ккал/моль Lam (табл. S1, Supplementary Materials). Небольшие различия в энергиях моделей **1–3** указывают на возможность сосуществования соответствующих положений Lam в межслоевом пространстве, что, очевидно, может быть причиной турбостратности слоистой упаковки в целом. Действительно, на дифрактограмме соединения Lam–MoS₂ практически не наблюдается пиков в диапазоне 33–35° 20, указывающих на предпочтительную ориентацию сульфидных слоев относительно друг друга, как, например, в соединениях MoS_2 с протонированными аминами [44, 45].

Основные структурные параметры наиболее выгодной модели **3** приведены в табл. 1, а мотив упаковки Lam в межслоевом пространстве показан на рис. 4. Как видно из рис. 1, данная модель позволяет достоверно описать экспериментальную дифрактограмму. В межслоевом пространстве молекулы Lam образуют множество контактов как с сульфидными слоями, так и друг с другом, формируя в органическом слое сетку межмолекулярных H-связей с участием групп OH, C=O и NH₂ соседних молекул (рис. 4). Так, NH₂-группа при ароматическом фрагменте уча-

Таблица 1

Параметр	Ритвельдовское уточнение	Квантово-химический расчет		
Состав ячейки	$(LamH)_{1/3}(MoS_2)_2$	LamH–(MoS ₂) ₆		
<i>a</i> , <i>b</i> , <i>c</i> , Å	5.697(14), 3.202(12), 12.83(2)	5.697 $(\vec{a} = \vec{a}_0)$, 9.605 $(\vec{b} = 3\vec{b}_0)$,		
		13.143 $(\vec{c} = \vec{c}_0 + \vec{\Delta}_a + \vec{\Delta}_b)$		
β, град.	90	102.52		
$V, Å^3$	117.02	702.11		
Mo—Mo, Å	2.760(19), 3.202(12), 3.792(19)	2.740-2.755, 3.111-3.213, 3.776-3.822		
Мо—Мо—Мо, град.	69.0(6)	69.05-69.63		
S—S Δz1, Δz2, Å	3.42(3), 2.61(2)	3.466, 2.679		
S—S Δh , Å	0.405(18)	0.409		
S—S Δh , Å	0.405(18)	0.409		

Структурные параметры LamH–MoS₂, полученные при уточнении дифрактограммы и их соотношение с параметрами расчетной периодической структуры

Puc. 4. Расположение органических молекул в межслоевом пространстве $MoS_2(a)$ и водородные связи в LamH–MoS₂(b)

ствует в образовании водородных связей со слоем MoS_2 и с атомом кислорода гидроксильной группы соседнего катиона LamH.

Для структурной модели LamH–MoS₂ проведен топологический анализ расчетного распределения электронной плотности $\rho(\mathbf{r})$ в рамках теории Бейдера «атомы в молекулах». Это позволило установить связевые критические точки КТ (3, –1), соответствующие нековалентным взаимодействиям в соединении. На основе полученных данных проведена оценка энергий нековалентных взаимодействий (E_{cont}) с использованием корреляционной зависимости Эспинозы – – Молинса – Леконта [46, 47]. Суммарные результаты анализа энергетики взаимодействий приведены в табл. 2.

Согласно полученным данным, суммарная энергия взаимодействия катиона LamH с сульфидными слоями составляет 14.2 ккал/моль. Наиболее прочными взаимодействиями между компонентами являются связи NH···S групп NH₂ и NH ароматического фрагмента (5.2 ккал/моль и 3.3 ккал/моль соответственно, рис. 4), их вклад в суммарную энергию достигает почти 60 %. Следующие по энергетической значимости – взаимодействия CH···S (пять контактов с общей энергией 2.7 ккал/моль) и два взаимодействия S···S с участием атома серы LamH (общая энергия 1.4 ккал/моль). Остальные контакты (N···S, O···S, OH···S) весьма слабые, их суммарная энергия составляет 1.8 ккал/моль.

Можно отметить сходство в расположении (почти перпендикулярном по отношению к слою MoS₂) сопряженного CN2 фрагмента LamH, участвующего в связывании с серой, и структурно подобного фрагмента протонированного гуанидина (GuaH), выполняющего аналогичную роль [27]. В обоих соединениях наиболее сильное связывание указанного фрагмента осуществляется с участием атомов серы в углублениях сульфидного слоя. При этом в обеих структурах для прочных водородных связей достигается практически идентичное расстояние H…S (2.28–2.43 Å и 2.23–2.35 Å для LamH и GuaH соответственно) и близкие значения энергии взаимодействия (5.2 и 5.8 ккал для LamH и GuaH соответственно). Иной, значительно меньший угол наклона этого же фрагмента и удлиненные H…S контакты наблюдаются в случае алкилзамещенных про-изводных гуанидина, где заместители создают стерические препятствия для образования прочной NH…S связи [27, 39]. Наблюдаемые закономерности позволяют предположить, что именно формирование катионом LamH водородных NH…S связей – основной фактор, определяющий мотив расположения данного катиона в межслоевом пространстве.

Для изучения взаимодействий Lam с поверхностью частиц MoS_2 на основе полученной структурной модели сконструирована «расслоенная» модель [44] с межслоевым расстоянием, увеличенным до 39 Å (**3-exf**, рис. S1, Supplementary Materials*). В этой модели сульфидный

Таблица 2

Тип контакта	Гетерослоистое соединение		Расслоенная модель	
	Число контактов	<i>Е</i> _{конт} , ккал/ моль LamH	Число контактов	<i>Е</i> _{конт} , ккал/ моль LamH
NH···S	2	8.51	2	15.3
$N \cdots S$	1	0.6	1	0.9
O…S	2	0.9	2	1.8
OH···S	1	0.3	1	1.4
CH···S	5	2.7	2	0.9
$S_{Lam} \cdots S$	2	1.4	—	_
$LamH\cdots MoS_2$	13	14.4	8	20.2

Энергии нековалентных взаимодействий LamH···MoS₂ в полученном соединении (ккал/моль LamH)

^{*} Supplementary materials для этой статьи доступны для авторизованных пользователей по ссылке doi 10.26902/JSC_id133019.

слой, не вовлеченный в связывание NH···S, отдален от органического на ~26 Å. Как и исходная структура, «расслоенная» модель оптимизирована в программе VASP и затем проанализирована в рамках теории Бейдера. Оптимизация «расслоенной» модели не привела к существенным изменениям в геометрии Lam и ориентации его фрагментов по отношению к слою MoS₂ по сравнению с исходной структурой. Однако в расслоенной модели наблюдалось заметное сокращение длины контактов LamH с атомами серы сульфида. Примечательно, что расслаивание приводит к значительному укорочению и упрочнению прежде всего водородных связей NH···S (табл. S2, S3, Supplementary Materials). Их энергии возрастают до 9.6 ккал/моль для группы NH₂ (+85 %) и до 5.7 ккал/моль для группы NH (+70 %). Аналогичная тенденция обнаружена нами ранее для расслоенного соединения MoS₂ с протонированными молекулами уротропина [23]. Можно также отметить, что в расслоенной форме LamH–MoS₂ заметно упрочняется водородная связь OH····S, ее энергия достигает 1.3 ккал/моль (+1 ккал/моль). В результате заметно (на ~40 %) возрастает общая энергия связи ламивудина с монослоем сульфида, которая для расслоенного соединения (+5.8 ккал/моль).

выводы

Методом монослоевого диспергирования из кристаллического природного дисульфида молибдена получено новое гетерослоистое соединение MoS_2 с протонированной формой лекарственного средства ламивудин. Его атомная структура определена с использованием моделирования дифрактограмм турбостратно-разупорядоченных систем методом сверхъячейки и квантовохимических расчетов с периодическими граничными условиями. На основе анализа распределения электронной плотности в рамках теории Бейдера «атомы в молекулах» охарактеризованы связывающие невалентные взаимодействия слоев MoS_2 и катионов ламивудина. Показано, что наибольший вклад в энергию взаимодействия между органическим и неорганическим компонентами вносят водородные связи $NH\cdots S$. Установлено, что при расслаивании соединения существенно упрочняется связывание катиона с монослоем MoS_2 за счет усиления водородных связей между ними.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-13-00241).

Элементный анализ и дифрактометрические исследования проведены при поддержке Министерства науки и высшего образования Российской Федерации с использованием научного оборудования Центра исследования строения молекул ИНЭОС РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Shi, Z. Sun, Y.H. Hu. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS₂. J. Mater. Chem. A, **2018**, 6(47), 23932–23977. https://doi.org/10.1039/c8ta08152b
- A.Y. Ledneva, G.E. Chebanova, S.B. Artemkina, A.N. Lavrov. Crystalline and nanostructured materials based on transition metal dichalcogenides: Synthesis and electronic properties. J. Struct. Chem., 2022, 63(2), 176–226. https://doi.org/10.1134/s0022476622020020
- A.S. Goloveshkin, I.S. Bushmarinov, N.D. Lenenko, M.I. Buzin, A.S. Golub, M.Y. Antipin. Structural properties and phase transition of exfoliated-restacked molybdenum disulfide. *J. Phys. Chem. C*, 2013, 117(16), 8509–8515. https://doi.org/10.1021/jp400087c
- S.S. Chou, N. Sai, P. Lu, E.N. Coker, S. Liu, K. Artyushkova, T.S. Luk, B. Kaehr, C.J. Brinker. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. *Nat. Commun.*, 2015, 6(1), 8311. https://doi.org/10.1038/ncomms9311
- Y. Kang, Y. Gong, Z. Hu, Z. Li, Z. Qiu, X. Zhu, P.M. Ajayan, Z. Fang. Plasmonic hot electron enhanced MoS₂ photocatalysis in hydrogen evolution. *Nanoscale*, **2015**, 7(10), 4482–4488. https://doi.org/10.1039/ c4nr07303g
- A.S. Goloveshkin, N.D. Lenenko, M.I. Buzin, V.I. Zaikovskii, A.V. Naumkin, A.S. Golub. Organic interlayers boost the activity of MoS₂ toward hydrogen evolution by maintaining high 1T/2H phase ratio. *Int. J. Hydrogen Energy*, 2023, 48(28), 10555–10565. https://doi.org/10.1016/j.ijhydene.2022.11.240

- R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce, S. Torrel, B. Branch, S. Lei, W. Chen, S. Najmaei, J. Lou, P.M. Ajayan, G. Gupta, A.D. Mohite, M. Chhowalla. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS₂. *APL Mater.*, **2014**, *2*(9). https://doi.org/10.1063/1.489 6077
- S. Ghatak, A.N. Pal, A. Ghosh. Nature of electronic states in atomically thin MoS₂ field-effect transistors. ACS Nano, 2011, 5(10), 7707–7712. https://doi.org/10.1021/nn202852j
- F. Li, Y. Li, J. Feng, Z. Gao, H. Lv, X. Ren, Q. Wei. Facile synthesis of MoS₂@Cu₂O–Pt nanohybrid as enzyme-mimetic label for the detection of the hepatitis B surface antigen. *Biosens. Bioelectron.*, 2018, 100, 512–518. https://doi.org/10.1016/j.bios.2017.09.048
- K. Bazaka, I. Levchenko, J.W.M. Lim, O. Baranov, C. Corbella, S. Xu, M. Keidar. MoS₂-based nanostructures: Synthesis and applications in medicine. *J. Phys. D: Appl. Phys.*, 2019, 52(18), 183001. https://doi.org/ 10.1088/1361-6463/ab03b3
- T. Liu, C. Wang, W. Cui, H. Gong, C. Liang, X. Shi, Z. Li, B. Sun, Z. Liu. Combined photothermal and photodynamic therapy delivered by PEGylated MoS₂ nanosheets. *Nanoscale*, **2014**, *6*(19), 11219–11225. https: //doi.org/10.1039/c4nr03753g
- Z. Tan, H. Dong, Q. Liu, H. Liu, P. Zhao, P. Wang, Y. Li, D. Zhang, Z. Zhao, Y. Dong. A label-free immunosensor based on PtPd NCs@MoS₂ nanoenzymes for hepatitis B surface antigen detection. *Biosens. Bioelectron.*, 2019, 142, 111556. https://doi.org/10.1016/j.bios.2019.111556
- 13. Z. Zhou, B. Li, C. Shen, D. Wu, H. Fan, J. Zhao, H. Li, Z. Zeng, Z. Luo, L. Ma, C. Tan. Metallic 1T phase enabling MoS₂ nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II window. *Small*, **2020**, *16*(43). https://doi.org/10.1002/smll.202004173
- S.S. Chou, B. Kaehr, J. Kim, B.M. Foley, M. De, P.E. Hopkins, J. Huang, C.J. Brinker, V.P. Dravid. Chemically exfoliated MoS₂ as near-infrared photothermal agents. *Angew. Chem., Int. Ed.*, 2013, 52(15), 4160– 4164. https://doi.org/10.1002/anie.201209229
- M. Singh, C. Zannella, V. Folliero, R. Di Girolamo, F. Bajardi, A. Chianese, L. Altucci, A. Damasco, M.R. Del Sorbo, C. Imperatore, M. Rossi, M. Valadan, M. Varra, A. Vergara, G. Franci, M. Galdiero, C. Altucci. Combating actions of green 2D-materials on gram positive and negative bacteria and enveloped viruses. *Front. Bioeng. Biotechnol.*, 2020, 8. https://doi.org/10.3389/fbioe.2020.569967
- D. Bisht, S.L. Rath, S. Roy, A. Jaiswal. MoS₂ nanosheets effectively bind to the receptor binding domain of the SARS-CoV-2 spike protein and destabilize the spike-human ACE2 receptor interactions. *Soft Matter*, 2022, 18(47), 8961–8973. https://doi.org/10.1039/d2sm01181f
- H. Li, M. Gong, J. Xiao, L. Hai, Y. Luo, L. He, Z. Wang, L. Deng, D. He. Photothermally activated multifunctional MoS₂ bactericidal nanoplatform for combined chemo/photothermal/photodynamic triple-mode therapy of bacterial and biofilm infections. *Chem. Eng. J.*, **2022**, *429*, 132600. https://doi.org/10.1016/j.cej. 2021.132600
- T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, Z. Liu. Drug delivery with PEGylated MoS₂ nano-sheets for combined photothermal and chemotherapy of cancer. *Adv. Mater.*, 2014, 26(21), 3433–3440. https://doi.org/10.1002/adma.201305256
- C. Zhang, D. Zhang, J. Liu, J. Wang, Y. Lu, J. Zheng, B. Li, L. Jia. Functionalized MoS₂-erlotinib produces hyperthermia under NIR. J. Nanobiotechnology, 2019, 17(1), 76. https://doi.org/10.1186/s12951-019-0508-9
- J. Liu, K. Lu, F. Gao, L. Zhao, H. Li, Y. Jiang. Multifunctional MoS₂ composite nanomaterials for drug delivery and synergistic photothermal therapy in cancer treatment. *Ceram. Int.*, 2022, 48(15), 22378–22386. https://doi.org/10.1016/j.ceramint.2022.04.244
- A.S. Goloveshkin, N.D. Lenenko, A.V. Naumkin, A.S. Golub. Structural significance of hydrophobic and hydrogen bonding interaction for nanoscale hybridization of antiseptic miramistin molecules with molybdenum disulfide monolayers. *Molecules*, 2023, 28(4), 1702. https://doi.org/10.3390/molecules28041702
- I.E. Ushakov, N.D. Lenenko, A.S. Goloveshkin, A.A. Korlyukov, A.S. Golub. Influence of noncovalent intramolecular and host-guest interactions on imatinib binding to MoS₂ sheets: a PXRD/DFT study. *Cryst-EngComm*, 2022, 24(3), 639–646. https://doi.org/10.1039/d1ce01350e
- A.S. Goloveshkin, N.D. Lenenko, A.A. Korlyukov, A.S. Golub. Probing hydrogen-bonding properties of a negatively charged MoS₂ monolayer by powder X-ray diffraction and density functional theory calculations. *ACS Omega*, **2020**, *5*(9), 4603–4610. https://doi.org/10.1021/acsomega.9b04161
- A.A. Öztürk, İ. Namlı, K. Güleç, Ş. Görgülü. Design of lamivudine loaded nanoparticles for oral application by nano spray drying method: A new approach to use an antiretroviral drug for lung cancer treatment. *Comb. Chem. High Throughput Screening*, 2020, 23(10), 1064–1079. https://doi.org/10.2174/13862073236662003 25155020

- J.J. García-Trejo, R. Ortega, M. Zarco-Zavala. Putative repurposing of lamivudine, a nucleoside/nucleotide analogue and antiretroviral to improve the outcome of cancer and COVID-19 patients. *Front. Oncol.*, 2021, 11. https://doi.org/10.3389/fonc.2021.664794
- A.S. Golub, Y.V. Zubavichus, Y.L. Slovokhotov, Y.N. Novikov. Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds. *Russ. Chem. Rev.*, 2003, 72(2), 123–141. https://doi.org/10.1070/rc2003v072n02abeh000789
- I.E. Ushakov, N.D. Lenenko, A.S. Goloveshkin, M.I. Buzin, R.U. Takazova, A.A. Korlyukov, V.I. Zaikovskii, A.S. Golub. Experimental and computational study of the structure and bonding interactions in layered compounds of molybdenum disulfide with guanidine derivatives. J. Struct. Chem., 2022, 63(10), 1558–1567. https://doi.org/10.1134/s002247662210002x
- 28. TOPAS 5 User Manual. Karlsruhe, Germany: Bruker AXS GmbH, 2014.
- G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.*, **1996**, 6(1), 15–50. https://doi.org/10.1016/0927-0256 (96)00008-0
- 30. G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set. *Phys. Rev. B*, **1996**, *54*(16), 11169–11186. https://doi.org/10.1103/physrevb.54.11169
- 31. S. Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15), 1787–1799. https://doi.org/10.1002/jcc.20495
- 32. G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B*, **1999**, *59*(3), 1758–1775. https://doi.org/10.1103/physrevb.59.1758
- X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, D.C. Allan. First-principles computation of material properties: the ABINIT software project. *Comput. Mater. Sci.*, 2002, 25(3), 478–492. https://doi.org/ 10.1016/s0927-0256(02)00325-7
- 34. A.S. Goloveshkin, A.S. Golub. Structural analysis of nanoscale-ordered organic-inorganic architectures based on MoS₂: Approaches and results. *INEOS Open*, **2022**, *5*. https://doi.org/10.32931/io2206r
- K. Ufer, G. Roth, R. Kleeberg, H. Stanjek, R. Dohrmann, J. Bergmann. Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. Z. Kristallogr. – Cryst. Mater., 2004, 219(9), 519–527. https://doi.org/10.1524/zkri.219.9.519.44039
- 36. F. Wypych, R. Schöllhorn. 1T-MoS₂, a new metallic modification of molybdenum disulfide. *J. Chem. Soc.*, *Chem. Commun.*, **1992**, (19), 1386–1388. https://doi.org/10.1039/c39920001386
- A.S. Goloveshkin, N.D. Lenenko, V.I. Zaikovskii, A.S. Golub, A.A. Korlyukov, I.S. Bushmarinov. Ridges and valleys on charged 1T-MoS₂ sheets guiding the packing of organic cations. *RSC Adv.*, 2015, 5(25), 19206–19212. https://doi.org/10.1039/c4ra15662e
- C. Capeletti da Silva, R.R. Coelho, M. de Lima Cirqueira, A.C. Campos de Melo, I.M. Landre Rosa, J. Ellena, F.T. Martins. Salts of the anti-HIV drug lamivudine with phthalic and salicylic acids. *CrystEng-Comm*, 2012, 14(14), 4562. https://doi.org/10.1039/c2ce25386k
- I.E. Ushakov, A.S. Goloveshkin, N.D. Lenenko, R.U. Takazova, M.G. Ezernitskaya, A.A. Korlyukov, V.I. Zaikovskii, A.S. Golub'. Structure and noncovalent interactions of molybdenum disulfide monolayers in the layered organo-inorganic compound with tetramethylguanidine. *Russ. J. Coord. Chem.*, 2020, 46(11), 779– 785. https://doi.org/10.1134/s1070328420090067
- A.N. Enyashin, A.L. Ivanovskii. On the capabilities of the X-ray diffraction method in determining polytypes in nanostructured layered metal disulfides. J. Struct. Chem., 2013, 54(2), 388–395. https://doi.org/ 10.1134/s0022476613020170
- V.V. Bannikov, I.R. Shein. Electronic structure of non-stoichiometric ZrCuSiAs-like layered LaZnAsO_{1-δ} compositions: FLAPW-GGA modeling. J. Struct. Chem., 2016, 57(4), 805–807. https://doi.org/10.1134/s002 2476616040259
- I.S. Kwon, I.H. Kwak, H.G. Abbas, G. Jung, Y. Lee, J. Park, S.J. Yoo, J.-G. Kim, H.S. Kang. Intercalation of aromatic amine for the 2H–1T' phase transition of MoS₂ by experiments and calculations. *Nanoscale*, 2018, 10(24), 11349–11356. https://doi.org/10.1039/c8nr02365d
- 43. A.N. Enyashin, G. Seifert. Density-functional study of $\text{Li}_x \text{MoS}_2$ intercalates ($0 \le x \le 1$). Comput. Theor. Chem., 2012, 999, 13–20. https://doi.org/10.1016/j.comptc.2012.08.005
- I.S. Bushmarinov, A.S. Goloveshkin, N.D. Lenenko, V.I. Zaikovskii, A.A. Korlyukov, A.S. Golub, I.L. Eremenko. Electrostatic origin of stabilization in MoS₂–organic nanocrystals. *J. Phys. Chem. Lett.*, 2016, 7(24), 5162–5167. https://doi.org/10.1021/acs.jpclett.6b02582

- I.E. Ushakov, A.S. Goloveshkin, N.D. Lenenko, M.G. Ezernitskaya, A.A. Korlyukov, V.I. Zaikovskii, A.S. Golub. Hydrogen bond-driven self-assembly between single-layer MoS₂ and alkyldiamine molecules. *Cryst. Growth Des.*, 2018, 18(9), 5116–5123. https://doi.org/10.1021/acs.cgd.8b00551
- E. Espinosa, E. Molins, C. Lecomte. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. *Chem. Phys. Lett.*, **1998**, 285(3–4), 170–173. https://doi.org/10.1016/s0009-2614(98)00036-0
- E. Espinosa, C. Lecomte, E. Molins. Experimental electron density overlapping in hydrogen bonds: Topology vs. energetics. *Chem. Phys. Lett.*, **1999**, 300(5–6), 745–748. https://doi.org/10.1016/s0009-2614(98) 01399-2