2025. Том 66, № 5

Май

145061 (C. 1–15)

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ИЕРАРХИЧЕСКАЯ СЛОЖНОСТЬ ДВУХ ПРОИЗВОДНЫХ ИНДЕНА

А.М. Банару^{1,2}, В.Е. Киреев², В.А. Батаев¹, Д.С. Кононович¹, А.З. Воскобойников¹, С.М. Аксенов²

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия E-mail: banaru@phys.chem.msu.ru

²Федеральный исследовательский центр «Кольский научный центр» РАН, Апатиты, Россия

Статья поступила	С доработки	Принята к публикации
16.01.2025	01.02.2025	01.02.2025

Методом рентгеноструктурного анализа исследованы 6-*трет*-бутил-5-метокси-2-метил-4-фенил-2,3-дигидро-1*H*-инден-1-он (1) и 5-*трет*-бутил-6-метокси-2-метил-7-(4-*трет*бутилфенил)-1*H*-инден (2). Обсуждается конформационное строение, низкочастотная область колебательного спектра молекул, топология и иерархическая сложность кристаллических структур. В обеих структурах нет выраженных специфических межмолекулярных взаимодействий, в то же время в структуре 1, молекула которой представляет собой замещенный инданон, можно выделить очень слабые H-связи, оказывающие существенное влияние на топологию межмолекулярных контактов и повышающие иерархическую сложность структуры 1 по сравнению с 2.

DOI: 10.26902/JSC_id145061 EDN: JJBGYI

Ключевые слова: структурный класс, полиэдр Вороного–Дирихле, межмолекулярный контакт, кристаллографическая сеть.

введение

Молекулярные кристаллы имеют структуру, иерархическая организация которой в общем случае неочевидна по причине слабых межмолекулярных взаимодействий. По мнению Картрайта и Маккея [1], «благодаря иерархизации, более общему принципу, чем периодичность кристаллов, можно найти структуры внутри структур на разных масштабах». Иерархический анализ устройства структур молекулярных кристаллов имеет самостоятельную ценность [2–4], а также может использоваться в прикладных целях, например, для предсказания спайности кристалла [5]. Иерархическую сложность структуры можно выразить некоторым индексом сборки [6] (на-именьшим числом стадий сборки до появления итоговой структуры), один из которых недавно исследовали для гетерополианионов структур минералов [7].

Из-за слабости и ненаправленности невалентных взаимодействий, как правило, бывает трудно предсказать, как будет меняться структура при фазовых переходах и при растворении в жидкости. Считается, что некоторые наиболее прочные и устойчивые контакты атомов взаимодействующих молекул (супрамолекулярные синтоны [8, 9]) достаточно воспроизводимы и могут использоваться в дизайне новых структур, но это в основном касается специфических взаимодействий, таких как H-связи, $\pi \cdots \pi$, C—H $\cdots \pi$, Hal \cdots Hal, Hal \cdots O и др. Однако некоторые контакты мешают образованию итоговой структуры [10]. Например, показано, что короткие кон-

[©] Банару А.М., Киреев В.Е., Батаев В.А., Кононович Д.С., Воскобойников А.З., Аксенов С.М., 2025

такты С…СІ могут вызывать псевдорацемическое двойникование хиральных кристаллов антигипертензивного лекарства гидрохлортиазида [11]. Также в качестве примера можно привести конкурирующие друг с другом контакты СІ…О в структуре этилхлорформиата (один с участием карбонильного атома кислорода, другой с участием простой эфирной группы), реализующиеся в двух полиморфах [12]. Исследовать невалентные контакты в структуре помогают методы молекулярных поверхностей, в первую очередь, молекулярного полиэдра Вороного–Дирихле (ПВД) и молекулярной поверхности Хиршфельда, хорошо дополняющие друг друга [13]. По мере усложнения молекулы быстро растет разнообразие межатомных контактов. Например, атомы молекул незамещенного имидазола образуют 20 разных контактов, а у одного из полиморфов 2,4, 5-трифенилимидазола число таких контактов уже 176 [14].

Одной из актуальной задач, которую можно решать методами ретикулярной химии [15–17], является поиск структурообразующих контактов, по-другому называемых структурными детерминантами [18]. Потенциальная энергия взаимодействия пар молекул, связанных структурообразующим контактом, по-видимому, должна быть не выше -6RT [19]. В России изучение структурообразующих контактов в молекулярном кристалле началось с работ Ю.В. Зефирова и П.М. Зоркого [20]. Позже для выявления структурообразующих контактов А.В. Малеев и соавт. [21] разработали подход, основанный на анализе межатомных взаимодействий методом атоматомных потенциалов, который затем использовали для конкретных структур [22-24]. Минимальный набор структурообразующих контактов можно задать в виде нечеткого подмножества всех контактов, реализованных в структуре [25]. Нечеткость набора структурообразующих контактов согласуется с кватаронной моделью зародышеобразования кристаллов [26]. В иностранной литературе кватарон обычно называют предзародышевым кластером и изучают современными экспериментальными методами [27]. На основании накопленных данных Раманан и Уиттингем [28] предложили модель зародышеобразования, которая предполагает аналог молекулярного кластера (point zero charge molecule, pzc) в качестве структурной единицы для немолекулярных кристаллов. Поскольку структура зарождающейся протофазы очень чувствительна к внешнему воздействию, то неудивительно, что условия кристаллизации, например, полярность растворителя, оказывают непосредственное влияние на кристаллизующийся из раствора полиморф [29]. Однако процесс зародышеобразования настолько сложен, что его изучение, которое бы позволяло визуализировать конкуренцию кватаронов (например, с помощью молекулярной динамики), пока осуществляется лишь на простых двумерных моделях структур [30–32].

В молекулярных кристаллах минимально необходимое число структурообразующих контактов, обеспечивающих трехмерный молекулярный каркас при заданных Z' (число молекул в симметрически независимой части элементарной ячейки) и Z" (число занятых молекулами орбит [33]), зависит от пространственной группы кристалла и занятых молекулами позиций [34], т.е. фактически от структурного класса (СК) [35], к которому относится кристаллическая структура.

Производные инденов и инданонов представляют интерес для органической химии из-за широкого применения данных классов веществ в производстве разнообразных биологически активных соединений. Ранее нами описаны структуры двух галогензамещенных инденовых производных (см. ЖСХ № 10 за 2024 г.). В металлоорганической химии депротонированные индены используются в качестве η^5 -инденильных лигандов комплексов переходных металлов. Например, хорошо известны инденильные комплексы металлов подгруппы титана, которые применяются на практике в гомогенной стереоспецифичной полимеризации α -олефинов [36]. В настоящей работе исследованы два соединения, служащие интермедиатами цирконоценовых комплексов с аналогичными свойствами [37], а именно 6-*трет*-бутил-5-метокси-2-метил-4-фенил-2,3-дигидро-1*H*-инден-1-он (1) и 5-*трет*-бутил-6-метокси-2-метил-7-(4-*трет*-бутилфенил)-1*H*инден (2). Структурные формулы соединений представлены на рис. 1. Формула 2 отличается от таковой 1 только наличием *трет*-бутильного радикала в *пара*-положении фенильного заместителя и заменой инданонового фрагмента на инденовый.

Рис. 1. Структурные формулы 6*-трет*-бутил-5-метокси-2-метил-4-фенил-2,3-дигидро-1*H*-инден-1-она 1 (*a*) и 5*-трет*-бутил-6-метокси-2-метил-7-(4*-трет*бутилфенил)-1*H*-индена 2 (*b*)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. 6-*трет*-бутил-5-метокси-2-метил-4-фенил-2,3-дигидро-1*H*-инден-1-он (1) и 5-*трет*бутил-6-метокси-2-метил-7-(4-*трет*-бутилфенил)-1*H*-инден (2) синтезированы в точности по методикам из [37]. Кристаллическая структура этих соединений ранее не исследовалась и изучается впервые, поскольку авторы [37] выполнили рентгеноструктурный анализ лишь для целевого комплексного соединения. Для получения соединений 1 и 2 в твердом кристаллическом виде использовался метод кристаллизации из гексана.

Квантово-химические расчеты. Квантово-химические расчеты выполнены в квантовохимическом пакете ORCA версии 6.0.1 [38] недавно разработанным композитным методом r^2 SCAN-3c [39] с учтенными поправками на дисперсионное взаимодействие и скорректированными ошибками суперпозиции базисного набора АО. В процессе квантово-химического исследования для поиска различных конформеров построены все возможные потенциальные функции внутреннего вращения. Затем для контроля и сравнения равновесные геометрические параметры и гармонические колебательные частоты конформеров рассчитаны методом DFT B3LYP в базисном наборе AO def2-TZVP.

Рентгеноструктурный анализ. Монокристаллы соединений 1 и 2 отобраны с использованием поляризационного микроскопа. Массив дифракционных данных получен при комнатной температуре посредством дифрактометра «XtaLAB Synergy» (излучение Мо K_{α} , графитовый монохроматор, детектор «Hybrid Pixel Array»). Уточнение параметров элементарной ячейки, интегрирование данных и введение поправок на фоновое излучение, фактор Лоренца и эффект поляризации проводили с пакетом программ CrysAlis [40].

Модели кристаллических структур получены методом *charge flipping* с помощью программы SUPERFLIP [41]. Итоговые уточнения проводились по программе Jana2020 [42]. Факторы атомного рассеяния и поправки на аномальную дисперсию взяты из Международных кристаллографических таблиц [43]. Экспериментальные данные и основные результаты представлены в табл. 1, молекулярные структуры соединений – на рис. 2.

Топологический анализ. Все расчеты выполнялись с помощью пакета программ ToposPro ver. 5.5.2.0 [44]. Детальная процедура построения молекулярной сети описана Е.В. Пересыпкиной и В.А. Блатовым [45]. Методом доменов [46] в программе AutoCN сформированы матрицы смежности для $\Omega_{at} \ge 1.5$ % от 4π стерадиан, где Ω_{at} – телесный угол для грани атомного полиэдра Вороного–Дирихле (ПВД). Далее молекулы стянуты к своему центру масс, и при наличии общих невалентных межатомных контактов две молекулы соединялись ребром молекулярной сети, что для молекулярных кристаллов считается стандартным представлением структуры [47]. При построении молекулярной сети учитывались все контакты с значениями $\Omega_{mol} > 0$, где Ω_{mol} – телесный угол для грани молекулярного ПВД [48]:

$$\Omega_{\rm mol} = \frac{\sum \Omega_{\rm at}}{\Omega_{\Sigma}} \cdot 100\%. \tag{1}$$

Таблица 1

Параметр	1	2	
Брутто-формула	$C_{21}H_{24}O_{2}$	C25H32O	
M _r	308.4	348.5	
Сингония	Моноклинная	Триклинная	
Пространственная группа	$P2_{1}/c$	$P\overline{1}$	
<i>a</i> , <i>b</i> , <i>c</i> , Å	14.2798(3), 8.2696(2), 15.7990(2)	8.4112(3), 9.0373(3), 15.4526(5)	
α, β, γ, град.	90, 106.1421(15), 90	73.900(3), 75.786(3), 73.621(3)	
$V, Å^3$	1792.12 (6)	1064.76 (7)	
Z	4	2	
Число отражений измеренных, незави- симых, наблюдаемых $(I > 3\sigma(I))$	25832, 2875, 2148	14626, 4733, 2734	
R _{int}	0.076	0.024	
$(\sin \theta / \lambda)_{max}, \AA^{-1}$	0.647	0.721	
$R(F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.056, 1.63	0.037, 0.048, 1.17	
Число уточняемых параметров	288	327	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}, e/Å^3$	0.24, -0.14	0.18, -0.14	
КБСД №	2403640	2403647	
a C19 C10 C10 C17 C21 C16 C17 C17 C17 C17 C17 C17 C17 C17 C17 C16 C16 C16 C16 C16 C16 C17 C16 C17 C16 C16 C17 C16 C16 C17 C16 C16 C17 C16 C16 C17 C16 C17 C16 C17 C16 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C17 C16 C17 C16 C17 C16 C17 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C17 C16 C17 C17 C16 C17 C17 C16 C17 C17 C17 C16 C17 C1	b 8 c_{10} c_{1	$\begin{array}{c} 224 \\ & C22 \\ & C23 \\ C19 \\ C20 \\ & C19 \\ C19 \\ C10 \\$	

Характеристики рентгеноструктурного эксперимента и результаты уточнения кристаллических структур

Рис. 2. Молекулярные структуры **1** (*a*) и **2** (*b*) с эллипсоидами тепловых колебаний атомов, отвечающих 50%-й вероятности

В числителе суммирование проводится по всем межатомным контактам пары молекул; Ω_{Σ} – сумма Ω_{at} для всех межатомных контактов исходной молекулы с ее окружением.

Далее из полученной сети последовательно удалялись ребра в порядке увеличения Ω_{mol} до тех пор, пока сеть не прекращала быть односвязной. Полученную таким образом односвязную сеть с наименьшим числом симметрически уникальных ребер считали критической. Сети классифицировали по расширенной базе данных TTD [49] с помощью RCSR-кода [50], а в отсутствие такового – с помощью NDn-номенклатуры [51], где N обозначает последовательность степеней неэквивалентных вершин сети, D – периодичность сети (D = M, C, L, T соответственно для 0-, 1-, 2- и 3-периодических сетей), n – порядковый номер сети в базе данных среди неизоморфных друг другу сетей при таких же N и D.

Величина имплицитной иерархической глубины (IHD) структуры молекулярного кристалла определяется как наименьшее число классов симметрически эквивалентных ребер, которыми центры масс соседних молекул, будучи вершинами сети, соединяются в односвязную сеть. Значение IHD зависит от типа пространственной группы и перечня занятых молекулами позиций Вайкоффа (WP) [52]:

$$IHD = |U_{SG}| + Z'' - 1 - f(WP_1, WP_2, ..., WP_{Z''}),$$
(2)

где $|U_{SG}|$ – число элементов во всяком минимальном порождающем подмножестве пространственной группы; Z'' – общее число занятых центрами масс молекул правильных систем точек, параметр $f(WP_1, WP_2, ..., WP_{Z''})$ определяется группами симметрии занятых позиций WP. В самом простом случае, когда заняты только общие позиции, f = 0.

Поверхности Хиршфельда. Поверхности Хиршфельда для анализа интегральных характеристик межмолекулярных контактов строились только для молекулярных кристаллов в программе CrystalExplorer [53, 54] при значении весовой функции $w(\mathbf{r}) = 0.5$ (рис. 3):

$$w(\mathbf{r}) = \frac{\sum_{A \in \text{mol}\rho_A} (\mathbf{r})}{\sum_{A \in \text{cryst}\rho_A} (\mathbf{r})},$$
(3)

где ρ_A – сферически усредненная электронная плотность вблизи ядра A. Функция $w(\mathbf{r})$ разделяет кристаллическое пространство на области, в которых суммарная электронная плотность отдельных сферических атомов молекулы составляет часть $w(\mathbf{r}) \ge 0.5$ суммарной электронной плотности всех сферических атомов кристалла в данной точке пространства. Поверхность раскрашивалась двумя способами: a) в соответствии с числом участков касания с поверхностями со-

Рис. 3. Поверхности Хиршфельда молекул **1** (*a*) и **2** (*b*): *слева* – без раскраски; *по центру* – с раскраской участков касания с соседними молекулами; *справа* – с раскраской по значениям *d*_{norm}

седних молекул (fragment patch); b) в соответствии с значениями d_{norm} :

$$d_{\rm norm} = \frac{d_i - r_i^{VdW}}{r_i^{VdW}} + \frac{d_e - r_e^{VdW}}{r_e^{VdW}},$$
(4)

где d_i и d_e – расстояния до ближайших атомов внутри и снаружи поверхности соответственно; r_i^{VdW} и r_e^{VdW} – их ван-дер-ваальсовы радиусы. При $d_{norm} < 0$ точка поверхности окрашивается в красный цвет, при $d_{norm} \approx 0$ – в белый цвет, при $d_{norm} > 0$ – в синий цвет. Общая площадь поверхности обозначалась S_{tot} .

Коэффициент обогащения поверхности Хиршфельда межатомными контактами определенного типа рассчитывалась по Йельшу и др. [55]. Пусть межатомным контактам типа $X \cdots Y$ (атомы X внутри поверхности, атомы Y – снаружи) отвечает доля поверхности молекулы C_{XY} . Тогда суммарная доля поверхности, отвечающая контактам атомов X, равна

$$S_X = C_{XX} + \frac{1}{2} \sum_{Y \neq X} (C_{XY} + C_{YX}).$$
(5)

Пусть R_{XY} – доля поверхности, приходящаяся на контакты $X \cdots Y$ в предположении, что с химической точки зрения все контакты равновероятны. Тогда $R_{XX} = S_X S_X$ и $R_{XY} = 2S_X S_Y$, а коэффициент обогащения поверхности контактами $X \cdots Y$ и $Y \cdots X$, в том числе и при Y = X, рассчитывается следующим образом:

$$E_{XY} = (C_{XY} + C_{YX}) / R_{XY}.$$
 (6)

Если молекулы при взаимной упаковке избегают коротких контактов $X \cdots Y$, то $E_{XY} < 1$, если же, наоборот, такие контакты предпочтительны, то $E_{XY} > 1$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Геометрическое строение конформеров исследуемых молекул качественно совпадает с представленным на рис. 2 экспериментальными результатами. В табл. 2–5 приведены экспериментальные и геометрические параметры молекул 1 и 2 в кристалле, а также равновесные геометрические параметры конформеров, рассчитанные методами квантовой химии. Из таблиц видно, что экспериментально определенные в кристаллах и рассчитанные равновесные геометричес кие параметры вполне удовлетворительно согласуются между собой. Также отметим количественную близость результатов, получаемых методами r^2 SCAN-3c и B3LYP/def2-TZVP.

Таблица 2

Cagaz		Длина, Å		Chara	Длина, Å			
Связь	r^2 SCAN-3c	B3LYP	PCA	Связь	r^2 SCAN-3c	B3LYP	PCA	
O1—C2	1.371	1.374	1.3851(17)	C8—C7	1.544	1.546	1.536(3)	
O1—C10	1.438	1.431	1.428(2)	С9—С8	1.511	1.515	1.506(2)	
O2—C6	1.217	1.212	1.210(2)	C11—C12	1.536	1.540	1.546(2)	
C1—C9	1.395	1.397	1.405(2)	C11—C13	1.542	1.545	1.5350(18)	
C2—C1	1.409	1.410	1.3928(17)	C11—C14	1.542	1.544	1.521(3)	
C3—C2	1.423	1.423	1.4157(12)	C16—C1	1.484	1.492	1.4972(17)	
C3—C4	1.390	1.390	1.4003(18)	C16—C17	1.399	1.398	1.3963(16)	
C3—C11	1.536	1.544	1.5444(19)	C16—C21	1.398	1.398	1.380(2)	
C5—C4	1.392	1.390	1.381(2)	C18—C17	1.390	1.390	1.400(3)	
C5—C6	1.469	1.475	1.483(2)	C19—C18	1.393	1.391	1.375(3)	
С5—С9	1.389	1.387	1.378(2)	C19—C20	1.392	1.390	1.3645(18)	
C6—C7	1.537	1.538	1.533(4)	C21—C20	1.391	1.390	1.386(2)	
C7—C15	1.526	1.527	1.335(6)					

Длины связей с участием неводородных атомов в структуре 1

Таблица З

	Значение, град.					
Угол	r^{2} SCAN-3c	B3LYP	РСА			
<u> </u>	117.0	110.1	11(74(14)			
$C_2 = C_1 = C_10$	117.8	110.1	110.74(14) 117.61(10)			
$C_2 = C_1 = C_9$	117.9	117.0	117.01(10) 122.56(11)			
C10 - C1 - C2	121.9	121.9	122.30(11)			
C16-C1-C9	120.0	120.2	119.80(12)			
01 - 02 - 01	120.0	119.4	119.23(9)			
01 - 02 - 03	117.1	117.6	117.01(10)			
$C_3 = C_2 = C_1$	122.8	122.9	123.65(11)			
C2—C3—C4	117.0	116.7	116.75(11)			
C11—C3—C2	121.9	122.5	122.42(11)			
C11—C3—C4	121.2	120.8	120.80(10)			
C3—C4—C5	120.6	120.9	119.42(13)			
C6—C5—C4	127.7	127.6	127.89(14)			
C9—C5—C4	121.9	121.9	123.54(13)			
C9—C5—C6	110.3	110.5	108.57(13)			
O2—C6—C5	127.2	127.2	126.27(16)			
O2—C6—C7	125.2	125.3	124.28(18)			
C5—C6—C7	107.6	107.5	108.82(16)			
C6—C7—C8	105.4	105.2	104.4(2)			
C6—C7—C15	111.5	112.4	115.6(3)			
C8—C7—C15	115.0	115.6	122.2(3)			
C9—C8—C7	104.9	105.1	105.52(17)			
C1—C9—C8	128.6	129.0	128.67(13)			
C5—C9—C1	119.8	119.7	118.85(13)			
C5—C9—C8	111.4	111.1	112.44(13)			
C3—C11—C12	111.3	111.4	111.17(12)			
C3—C11—C13	110.1	110.0	110.38(10)			
C3—C11—C14	110.6	111.3	110.41(14)			
C12-C11-C14	107.1	106.9	107.81(12)			
C13—C11—C12	107.3	107.2	106.42(13)			
C13—C11—C14	110.3	109.9	110.57(15)			
C1—C16—C17	120.0	120.3	118.57(13)			
C1—C16—C21	121.1	121.3	122.58(10)			
C17—C16—C21	118.9	118.4	118.82(13)			
C16—C17—C18	120.5	120.8	119.25(15)			
C19—C18—C17	120.2	120.3	120.86(13)			
C18—C19—C20	119.7	119.5	119.64(18)			
C19—C20—C21	120.1	120.1	120.41(17)			
C16—C21—C20	120.6	120.9	120.97(12)			

Валентные углы с участием неводородных атомов в структуре 1

В молекуле из данных РСА 2 наблюдаются относительно большие длины полуосей эллипсоида тепловых колебаний у атомов углерода *трет*-бутильной группы фенильного заместителя (рис. 2b). Эти полуоси расположены в плоскости, перпендикулярной связи C19—C22, вокруг которой может происходить вращение *трет*-бутильного заместителя. Торсионный угол C1— C2—O1—C10 составляет $\pm 60.2^{\circ}$ (или $\pm 56.0^{\circ}$ в расчете r^2 SCAN-3c и $\pm 65.3^{\circ}$ в расчете B3LYP)

Таблица 4

Chast	Длина, Å		Charat	Длина, Å			
Связь	r^2 SCAN-3c	B3LYP	PCA	Связь	r^2 SCAN-3c	B3LYP	PCA
O1—C2	1.384	1.384	1.3826(11)	C11—C13	1.541	1.544	1.527(2)
O1—C10	1.434	1.428	1.429(2)	C11—C14	1.542	1.545	1.525(2)
C2—C1	1.413	1.414	1.4044(11)	C12—C11	1.537	1.540	1.5398(18)
C3—C2	1.411	1.413	1.4114(11)	C16—C1	1.482	1.490	1.4975(11)
C4—C3	1.401	1.400	1.3959(12)	C17—C16	1.399	1.399	1.3821(16)
C5—C4	1.389	1.387	1.3823(11)	C17—C18	1.386	1.386	1.3899(11)
С5—С9	1.402	1.400	1.3916(11)	C18—C19	1.402	1.401	1.3936(14)
C6—C5	1.458	1.461	1.4651(12)	C19—C20	1.396	1.395	1.3888(16)
C7—C6	1.348	1.345	1.3369(11)	C21—C16	1.394	1.394	1.3813(14)
C7—C8	1.511	1.513	1.5074(12)	C21—C20	1.393	1.393	1.3856(11)
C7—C15	1.489	1.492	1.4899(12)	C22—C19	1.530	1.536	1.5315(11)
C8—C9	1.507	1.511	1.5073(11)	C22—C23	1.541	1.544	1.482(4)
C9—C1	1.388	1.390	1.3922(12)	C22—C24	1.533	1.536	1.522(3)
C11—C3	1.537	1.546	1.5436(11)	C22—C25	1.541	1.543	1.500(3)

Длины связей с участием неводородных атомов в структуре 2

Таблица 5

Валентные углы с участием неводородных атомов в структуре 2

VEOR	Значение, град.					
9101	r ² SCAN-3c	B3LYP	PCA			
1	2	3	4			
C10—O1—C2	115.3	116.9	116.34(9)			
C9—C1—C2	117.9	117.8	117.72(7)			
C16—C1—C2	121.5	121.8	122.86(7)			
C16—C1—C9	120.5	120.3	119.37(7)			
O1—C2—C1	118.8	118.9	119.44(7)			
O1—C2—C3	118.6	118.5	118.10(7)			
C3—C2—C1	122.5	122.5	122.41(8)			
C4—C3—C2	117.4	117.2	117.45(7)			
C11—C3—C2	121.8	122.4	121.96(7)			
C11—C3—C4	120.7	120.4	120.58(7)			
C5—C4—C3	120.9	121.1	121.00(7)			
C4—C5—C9	120.6	120.6	120.58(8)			
C6—C5—C4	130.8	130.9	131.19(7)			
C6—C5—C9	108.4	108.5	108.21(7)			
C7—C6—C5	110.1	110.3	110.10(7)			
C6—C7—C8	109.7	109.6	109.98(7)			
C15—C7—C6	128.0	127.9	127.93(9)			
C15—C7—C8	122.3	122.5	122.05(8)			
C7—C8—C9	103.2	103.3	103.06(6)			
C5—C9—C1	120.6	120.7	120.83(7)			
C8—C9—C1	130.8	130.9	130.46(7)			
C8—C9—C5	108.4	108.3	108.65(7)			
C12—C11—C3	111.7	111.8	111.03(9)			

		Ок	ончание табл. 5
1	2	3	4
C12—C11—C13	107.0	106.8	106.70(11)
C12—C11—C14	107.2	107.1	106.74(12)
C13—C11—C3	111.2	111.5	109.73(10)
C14—C11—C3	109.7	109.8	110.67(10)
C14—C11—C13	109.9	109.7	111.87(11)
C17—C16—C1	120.6	120.8	121.77(9)
C17—C16—C21	117.9	117.3	117.95(8)
C21—C16—C1	121.5	121.8	120.27(9)
C18—C17—C16	120.8	121.1	120.79(10)
C17—C18—C19	121.8	121.9	121.73(11)
C18—C19—C20	117.2	116.7	116.65(8)
C22—C19—C18	119.8	120.2	121.27(9)
C22—C19—C20	123.0	123.1	122.08(9)
C21—C20—C19	121.3	121.5	121.61(9)
C20—C21—C16	121.2	121.4	121.26(10)
C19—C22—C23	109.3	109.5	110.23(13)
C19—C22—C24	112.4	112.4	111.94(12)
C19—C22—C25	109.3	109.5	109.55(10)
C23—C22—C24	108.3	108.1	110.36(16)
C25—C22—C23	109.4	109.2	108.50(18)
C25—C22—C24	108.3	108.1	106.13(16)

у молекулы 1 и ±63.1 (или ±66.2° в расчете r^2 SCAN-3с и ±68.4° в расчете B3LYP) у молекулы 2. Таким образом, этот фрагмент в обеих структурах находится в очень близкой синклинальной конформации. Торсионный угол C2—C1—C16—C17 составляет ±59.1 (или ±60.5° в расчете r^2 SCAN-3c и ±61.4° в расчете B3LYP) у молекулы 1 и ±58.3 (или ±54.8° в расчете r^2 SCAN-3c и ±58.0° в расчете B3LYP) у молекулы 2. Следовательно, фенильное кольцо тоже одинаково повернуто относительно инденового фрагмента. Торсионный угол C4—C3—C11—C12 составляет ±3.5 (или ±0.2° в расчете r^2 SCAN-3c и ±0.8° в расчете B3LYP) у молекулы 1 и ±0.5 (или ±1.6° в расчете r^2 SCAN-3c и ±0.9° в расчете B3LYP) у молекулы 2, что свидетельствует о синперипланарной (фактически, планарной) конформации данного фрагмента в обоих случаях. Такая конформация может стабилизироваться внутримолекулярными контактами C13—H…O1 и C14—H…O1.

В обеих молекулах три соседних положения бензольного кольца (С1, С2 и С3) занимают весьма объемные заместители. Их повороты из-за стерических факторов не могут рассматриваться изолированно друг от друга. Это видно, в числе прочего, из анализа построенных нами одномерных потенциальных функций внутреннего вращения с участием этих групп: они не всюду гладкие, поворот одной группы вызывает изменения (иногда существенные) в ориентации двух других групп. Для корректного описания конформационной динамики и колебательного спектра этих молекул требуется решение как минимум трехмерной ангармонической колебательной задачи, которое в настоящей работе не проводилось. Учитывая сказанное, к результатам расчета колебательного спектра этих молекул в гармоническом приближении следует относиться с известной осторожностью. Поэтому ограничимся только качественными наблюдениями.

Нас в первую очередь интересует низкочастотная область колебательного спектра, отвечающая наименее жестким модам, вдоль нормальных координат которых возможны наибольшие искажения, обусловленные межмолекулярными взаимодействиями в кристалле. У молекулы 1, как и у молекулы 2, по данным обоих квантово-химических методов семь нормальных колебаний

Таблица б

Коэффициент	1	2
$S_{ m tot}$, Å ²	364.8	431.1
$E_{ m HC}$	1.15	1.09
$E_{ m HO}$	1.13	1.09
$E_{ m HH}$	0.98	0.99
$E_{ m OO}$	0.33	0
$E_{ m CC}$	0	0
$E_{ m OC}$	0	0

Коэффициенты обогащения поверхности Хирифельда в структурах 1 и 2

имеют частоту менее 100 см⁻¹. Все они являются сложными движениями – в той или иной мере смешанными торсионными движениями и неплоскими искажениями конденсированных циклов.

В табл. 6 представлены характеристики поверхности Хиршфельда молекул 1 и 2 (рис. 3). Обе поверхности имеют по 14 патчей, отвечающих касаниям с поверхностями соседних молекул, значит, в обоих случаях молекулярное координационное число $CN_{mol} = 14$, встречающееся более чем в половине гомомолекулярных кристаллов с малыми органическими молекулами [3]. Коэффициент обогащения поверхности контактами О····H в обеих структурах больше единицы, как это почти всегда бывает у кислородсодержащих органических соединений [55]. При этом наблюдаемые значения $E_{HC} \approx 1.1$ характерны скорее для незамещенных ароматических углеводородов, тогда как у кислородсодержащих соединений (как ароматических, так и алифатических) обычно $E_{HC} < 1$. В то же время значение $E_{CC} = 0$ является маркером отсутствия $\pi \cdots \pi$ специфических взаимодействий. Например, у основной полиморфной модификации бензола $E_{HC} \approx 1.21$ (благодаря С—Н···· π взаимодействиям), $E_{HH} = 0.96$, $E_{CC} = 0$ [55]. Единственное, чем 1 и 2 существенно различаются, это $E_{OO} > 0$ у молекулы 1 и $E_{OO} = 0$ у молекулы 2. Интересно само наличие области поверхности (~0.1 % S_{tot}), отвечающей X = Y = O и обусловленной карбонильным атомом O2 у молекулы 1.

Задав очень мягкий критерий H-связи X—H···Y, а именно d(H···Y) < 2.7 Å; d(X···Y) < 4.0 Å, $\angle(C-H···O) > 120^\circ$, в структуре **1** формально можно выделить три очень слабые межмолекулярные H-связи с участием атома O2: C4—H4···O2 ($\overline{x}, \overline{y} + 1, \overline{z}$): d(H···O) = 2.59 Å; $\angle(C-$ H···O) = 167°, C21—H21···O2 ($\overline{x}, \overline{y}, \overline{z}$): d(H···O) = 2.68 Å; $\angle(C-$ H···O) = 156° и C12—H12a··· O2 ($\overline{x}, \overline{y} + 1, \overline{z}$): d(H···O) = 2.53 Å, $\angle(C-$ H···O) = 124°. В структуре **2** межмолекулярных H-связей, отвечающих такому мягкому критерию, не имеется из-за отсутствия карбонильного атома O.

Молекулы 1 соединяются указанными Н-связями в бесконечные ленты вдоль координатной оси Y (рис. 4). Каждая молекула окружена четырьмя соседями внутри ленты, а десять соседних молекул принадлежат другим лентам. Если бы все 14 патчей поверхности имели примерно равную площадь, то на касания внутри ленты приходилось бы 4/14, или ~28 % S_{tot} , однако в действительности на эти касания приходится ~40 % S_{tot} , что свидетельствует об их относительно большом вкладе в систему межмолекулярных касаний. Патч с наибольшей площадью отвечает касанию молекул, между которыми есть упомянутая H-связь C21—H2…O2, этот патч показан светло-коричневым цветом на рис. 3a (в середине), его площадь составляет 60.3 Å² (~1/6 S_{tot}). Красные пятна, отвечающие тем участкам поверхности Хиршфельда, которые пересекает H-связь C21—H21…O2, также видны на рис. 3a (справа).

Кристаллическая структура 1 принадлежит самому распространенному для структурному классу (СК) среди гомомолекулярных органических кристаллов (свыше 30 % структур [56], включая хиральные): $P2_1/c$, Z = 4(1). Кристаллическая структура 2 относится ко второму по распространенности у гомомолекулярных органических рацематов СК $P\overline{1}$, Z = 2(1). Известно, что $|U_{SG}| = 3$ для группы $P2_1/c$ и $|U_{SG}| = 4$ для группы $P\overline{1}$ [52], поэтому, согласно формуле (2),

Рис. 4. Фрагмент ленты, идущей вдоль *Y*, в структуре 1 (проекция вдоль *Z*). Штриховыми линиями обозначены слабые Н-связи

HD = 3 для структуры 1 и IHD = 4 для структуры 2. Это означает, что структуре 1 требуется, как минимум, три структурообразующих контакта, в то время как у структуры 2 число структурообразующих контактов равно, как минимум, четырем. Как ранее продемонстрировано на выборке 4249 молекулярных структур, относящихся к СК $P2_1/c$, Z = 4(1), число классов эквивалентности ребер в критической сети у более чем 90 % структур не превышает значение IHD либо превышает его на 1–2 [57]. Таким образом, структуры обычно проявляют экономичность в построении за счет структурообразующих контактов, что в каком-то смысле является одним из отражений пятого правила Полинга о том, что число разных по конструкции структурных фрагментов стремится к минимуму [58]. Наличие «избыточного» контакта, как правило, не случайно – оно указывает на агломерацию молекул в протяженные ансамбли [59] и, таким образом, свидетельствует о большей иерархической сложности структуры, чем от нее можно было ожидать.

Помимо значения $|U_{SG}|$, типы пространственных групп различаются долей запрещенного объема элементарной ячейки, в котором не могут находиться центры одинаковых шаров, если они занимают орбиту общего положения данной пространственной группы [60]. В связи с этим каждый тип пространственной группы характеризуется строгой нижней границей объема элементарной ячейки, при котором доля запрещенного объема не превышает доли пустот в плотнейшей шаровой упаковке (~0.26), однако у групп $P2_1/c$ и $P\overline{1}$ эта нижняя граница одинакова (19 Å³) [61]. Поэтому объяснить изменение пространственной группы при переходе от 1 к 2 простым изменением объема молекулы нельзя.

Значение $CN_{mol} = 14$ реализуется у 1 и 2 по-разному: сеть межмолекулярных контактов в структуре 1 относится к типу tcg-х (рис. 5*a*), в структуре 2 – к типу gpu-х (рис. 5*b*). У гомомолекулярных структур сеть tcg-х встречается чуть чаще, чем gpu-х, но более чем в 2 раза реже, чем аналог ОЦК-кладки (bcu-х) [3]. Топологическая плотность у сети tcg-х незначительно выше, чем у gpu-х; также эти сети различаются минимальным числом сортов эквивалентных ребер – 6 и 4 соответственно [50]. С точки зрения Шэнноновской сложности, сеть tcg-х сложнее, чем gpu-х [62]. У искаженных вариантов этих сетей в 1 и 2 соответственно 9 и 11 сортов ребер, так что у 2 сеть искажена заметно больше. Однако, как уже было сказано, можно удалить из этих сетей ребра некоторых сортов так, чтобы осталось соответственно 3 и 4 сорта ребер и чтобы сеть осталась односвязной.

Если все сорта ребер ранжировать по убыванию отвечающего им значения Ω_{mol} , то первых трех сортов ребер в структуре **1**, к сожалению, недостаточно для того, чтобы сеть была связной. Критическая сеть в этом случае относится к типу **hex** (простая гексагональная кладка) и содержит пять сортов ребер, таким образом, два ребра являются «избыточными». Из пятерки ребер без ущерба для связности можно удалить следующие два ребра: *1*) ребро, отвечающее контакту молекул, связанных трансляцией вдоль *Y*; *2*) ребро, отвечающее контакту молекул через один

Puc. 5. Топологические типы tcg-x(a) и gpu-x(b) и в RCSR [50]

(любой) из двух центров инверсии, которые отстоят друг от друга на b/2. Оставшаяся подсеть является 5-координированной и относится к типу **nov** (рис. 6*a*). «Избыточные» ребра проецируются внутрь голубого овала на рис. 6*a* и соединяют центры масс молекул в ту же самую ленту, которая показана на рис. 4 и относится к типу **(3,6)(1,2)**. Таким образом, формирование этой ленты неслучайно, оно противоречит принципу экономичности структуры, и лента может обоснованно рассматриваться в качестве протяженной структурной единицы более высокого уровня, чем молекула.

Рис. 6. Схемы структурных классов: $P2_1/c$, Z = 4(1) с сетью опорных контактов типа **nov** (*a*) и $P\overline{1}$, Z = 2(1) с сетью опорных контактов типа **pcu** (*b*). Петлей обозначены контакты с молекулами, отстоящими на трансляцию, над и под исходной молекулой. Двойной линией обозначены два контакта кратности 2 вдоль вертикальной винтовой оси 2_1 . В структурах возможен альтернативный выбор координатного базиса, не влияющий на комбинаторный тип связывания молекул

Таблица 7

		1				2	
$\Omega_{mol} \ge, \%$	Периодич- ность	CN _{mol}	Символ [64]	$\Omega_{\rm mol} \ge, \%$	Периодич- ность	CN _{mol}	Символ [64]
2.90	3D	14	tcg-x	2.25	3D	14	gpu-x
5.00	3D	13	13T5	3.55	3D	13	bcu-x-13-C2/m
5.84	3D	11	fcu	5.01	3D	11	elc
5.98	3D	9	chb-9-P21/c	5.53	3D	9	nch
6.78	3D	8	hex	5.69	3D	8	hex
			(критическая сеть)				
_	—	_	—	6.19	3D	7	svk
7.05	2D	6	(4,4) Ha	8.71	3D	6	рси
							(критическая сеть)
7.82	1D	4	(3,6)(1,2)	8.82	2D	4	sql
8.83	1D	2	2C1	12.04	1D	3	(4,4)(0,2)
17.22	0D	1	1M2-1	12.82	0D	1	1M2-1

Многоуровневый анализ сети межмолекулярных контактов в структурах 1 и 2

Примечание: fcu; $Fm\overline{3}m \rightarrow P21/c$ (c, -1/2a-1/2b, a-b; 1/4, 0, 1/4); набор связей: 1, 2, 3, 4, 6, 7, 8.

В структуре 2 критическая сеть уже содержит минимально допустимое число сортов ребер, поэтому принцип экономичности здесь не нарушается, и выделять протяженные молекулярные агломераты, играющие самостоятельную роль, в этой структуре было бы необоснованным. Критическая сеть структуры 2 схематически показана на рис. 6b. Она относится к типу **pcu** (аналог простой кубической кладки) и образована ребрами, которые отвечают двум неколлинеарным трансляциям и двум центрам инверсии, отстоящим друг от друга по направлению, не компланарному двум указанным трансляциям. Альтернативными топологическими типами, реализующимися в этом же СК в отсутствие «избыточных» контактов, являются алмазный тип (dia) и тип «однослойного графита» BN (bnn) [63].

Полные результаты многоуровневого топологического анализа представлены в табл. 7. Изза того, что в структуре 2 есть два разных контакта, у которых телесный угол совпадает до сотых долей процента ($\Omega_{mol} = 3.55$ %), число уровней организации структуры 2 на единицу меньше общего числа неэквивалентных ребер. Уровни организации структуры 1 соответствуют практически тем же значениям CN_{mol} , за исключением $CN_{mol} = 7$ (этот уровень у 1 отсутствует) и $CN_{mol} = 3$ (у 1 $CN_{mol} = 2$). Общими в организации структур 1 и 2 являются молекулярный димер 1M2-1 и искаженная простая гексагональная кладка молекул hex.

Д.С. Кононович и А.З. Воскобойников выполнили синтез соединений в рамках государственного задания МГУ № 121021000105-7 и благодарят МГУ им. М.В. Ломоносова за доступ к спектрометру «Agilent Technologies 8890 GC/5977C MSD» Центра коллективного пользования научно-исследовательским оборудованием «Технологии получения новых наноструктурированных материалов и их комплексного исследования» МГУ им. М.В. Ломоносова, приобретенному в рамках Программы обновления оборудования (Национальный проект «Наука») и использованному для анализа органических полупродуктов при синтезе 1 и 2.

Рентгеноструктурное исследование выполнено В.Е. Киреевым и С.М. Аксеновым в рамках государственного задания КНЦ 122011300125-2.

Квантово-химические расчеты выполнены В.А. Батаевым в рамках государственного задания МГУ 116061750196-9.

Топологические расчеты выполнены А.М. Банару в рамках государственного задания МГУ № 121031300090-2.

СПИСОК ЛИТЕРАТУРЫ

- 1. J.H.E. Cartwright, A.L. Mackay. Beyond crystals: The dialectic of materials and information. *Philos. Trans. R. Soc., A*, **2012**, *370*(1969), 2807–2822. https://doi.org/10.1098/rsta.2012.0106
- F. Aman, A.M. Asiri, W.A. Siddiqui, M.N. Arshad, A. Ashraf, N.S. Zakharov, V.A. Blatov. Multilevel topological description of molecular packings in 1,2-benzothiazines. *CrystEngComm*, 2014, 16(10), 1963–1970. https://doi.org/10.1039/c3ce42218f
- O. Carugo, O.A. Blatova, E.O. Medrish, V.A. Blatov, D.M. Proserpio. Packing topology in crystals of proteins and small molecules: A comparison. *Sci. Rep.*, 2017, 7(1), 13209. https://doi.org/10.1038/s41598-017-12699-4
- 4. O.A. Blatova, V.A. Blatov. Hierarchical topological analysis of crystal structures: The skeletal net concept. *Acta Crystallogr.*, *Sect. A: Found. Adv.*, **2024**, *80*(1), 65–71. https://doi.org/10.1107/s2053273323008975
- P.N. Zolotarev, M. Moret, S. Rizzato, D.M. Proserpio. Searching new crystalline substrates for OMBE: Topological and energetic aspects of cleavable organic crystals. *Cryst. Growth Des.*, 2016, 16(3), 1572–1582. https://doi.org/10.1021/acs.cgd.5b01695
- 6. J. Jaeger. Assembly theory: What it does and what it does not do. J. Mol. Evol., **2024**, 92(2), 87–92. https: //doi.org/10.1007/s00239-024-10163-2
- R.M. Hazen, P.C. Burns, H.J. Cleaves, R.T. Downs, S.V. Krivovichev, M.L. Wong. Molecular assembly indices of mineral heteropolyanions: Some abiotic molecules are as complex as large biomolecules. J. R. Soc. Interface, 2024, 21(211), 20230632. https://doi.org/10.1098/rsif.2023.0632
- G.R. Desiraju. Supramolecular synthons in crystal engineering A new organic synthesis. Angew. Chem., Int. Ed. Engl., 1995, 34(21), 2311–2327. https://doi.org/10.1002/anie.199523111
- 9. J.D. Dunitz, A. Gavezzotti. Supramolecular synthons: Validation and ranking of intermolecular interaction energies. *Cryst. Growth Des.*, **2012**, *12*(12), 5873–5877. https://doi.org/10.1021/cg301293r
- 10. R. Taylor. Identifying intermolecular atom…atom interactions that are not just bonding but also competitive. *CrystEngComm*, **2020**, *22*(43), 7145–7151. https://doi.org/10.1039/d0ce00270d
- S.P. Thomas, A. Grosjean, G.R. Flematti, A. Karton, A.N. Sobolev, A.J. Edwards, R.O. Piltz, B.B. Iversen, G.A. Koutsantonis, M.A. Spackman. Investigation of an unusual crystal habit of hydrochlorothiazide reveals large polar enantiopure domains and a possible crystal nucleation mechanism. *Angew. Chem.*, *Int. Ed.*, 2019, 58(30), 10255–10259. https://doi.org/10.1002/anie.201905085
- N.A. Bhale, A. Sudheendranath, S.P. Thomas, A.G. Dikundwar. Variable Cl. O halogen bonding modes in dimorphs of a room temperature liquid ethyl chloroformate revealed by in situ cryo-crystallography. *Cryst. Growth Des.*, 2023, 23(6), 4301–4312. https://doi.org/10.1021/acs.cgd.3c00113
- 13. A.A. Korlyukov, P.A. Buikin, P.V. Dorovatovskii, A.V. Vologzhanina. Synthesis, NoSpherA2 refinement, and noncovalent bonding of abiraterone bromide monohydrate. *Struct. Chem.*, **2023**, *34*(5), 1927–1934. https://doi.org/10.1007/s11224-023-02210-3
- 14. I.N. Karaseva, M.O. Karasev, S.V. Kurbatova. Structure and polymorphism of imidazole derivatives. *Russ. J. Phys. Chem. A*, **2021**, *95*(1), 119–126. https://doi.org/10.1134/s0036024421010118
- N.W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, O.M. Yaghi. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. *Acc. Chem. Res.*, 2005, 38(3), 176–182. https: //doi.org/10.1021/ar0200221
- 16. V.A. Blatov. Methods for topological analysis of atomic nets. J. Struct. Chem., 2009, 50(S1), 160–167. https://doi.org/10.1007/s10947-009-0204-y
- 17. E.V. Alexandrov, A.P. Shevchenko, N.A. Nekrasova, V.A. Blatov. Topological methods for analysis and design of coordination polymers. *Russ. Chem. Rev.*, **2022**, *91*(4), RCR5032. https://doi.org/10.1070/rcr5032
- 18. A. Gavezzotti, G. Filippini. Polymorphic forms of organic crystals at room conditions: Thermodynamic and structural implications. *J. Am. Chem. Soc.*, **1995**, *117*(49), 12299–12305. https://doi.org/10.1021/ja00154a032
- 19. B. Dittrich, L.E. Connor, F.P.A. Fabbiani, P. Piechon. Linking solid-state phenomena *via* energy differences in 'archetype crystal structures'. *IUCrJ*, **2024**, *11*(3), 347–358. https://doi.org/10.1107/s2052252524002641
- 20. Y.V. Zefirov, P.M. Zorky. New applications of van der Waals radii in chemistry. *Russ. Chem. Rev.*, **1995**, 64(5), 415–428. https://doi.org/10.1070/rc1995v064n05abeh000157
- A.V. Maleev, A.A. Gevorgyan, K.A. Potekhin. New approach to the analysis of molecular packings in crystals with the use of atom-atom potentials. J. Struct. Chem., 2018, 59(2), 455–462. https://doi.org/10.1134/s0022476618020294
- A.I. Ismiev, K.A. Potekhin, A.V. Maleev, R.K. Askerov, A.M. Maharramov. Synthesis, molecular and crystal structure of ethyl-4,6(R,S)-diphenyl-2-dicyanomethylenecyclohex-3-ene-1(R,S)-carboxylate. *J. Struct. Chem.*, 2018, 59(8), 1911–1917. https://doi.org/10.1134/s0022476618080206

- A.I. Ismiyev, K.A. Potekhin, A.V. Maleev, R.K. Askerov, A.M. Maharramov. Synthesis, molecular and crystal structure of ethyl 5-cyano-2-(dicyanomethyl)-2-methyl-4-oxo-6-phenyl-3-azabicyclo[3.1.0]hexane-1-carboxylate. J. Struct. Chem., 2019, 60(3), 485–493. https://doi.org/10.1134/s0022476619030181
- A.I. Ismiev, K.A. Potekhin, A.V. Maleev, A.M. Maharramov. Synthesis of ethyl-2-dicyanomethylene-4-methyl-6-phenyl-3-cyclohexene-1-carboxylate and molecular agglomerates in its crystal structure. *J. Struct. Chem.*, 2019, 60(12), 1896–1905. https://doi.org/10.1134/s0022476619120059
- 25. A.M. Banaru. A fuzzy set of generating contacts in a molecular agglomerate. *Moscow Univ. Chem. Bull.*, **2019**, 74(3), 101–105. https://doi.org/10.3103/s0027131419030039
- 26. A.M. Askhabov. Kvataronnye modeli zarozhdeniya i rosta kristallov (Quataron models of nucleation and growth of crystals). *Zap. Ross. Mineral. O-va*, **2016**, *145*(5), 17–24. [In Russian]
- 27. K. Harano. Self-assembly mechanism in nucleation processes of molecular crystalline materials. *Bull. Chem. Soc. Jpn.*, **2021**, *94*(2), 463–472. https://doi.org/10.1246/bcsj.20200333
- 28. A. Ramanan, M.S. Whittingham. How molecules turn into solids: The case of self-assembled metal–organic frameworks. *Cryst. Growth Des.*, **2006**, *6*(11), 2419–2421. https://doi.org/10.1021/cg0604273
- P.N. Zolotarev, N.A. Nekrasova. On the influence of solvent properties on the structural characteristics of molecular crystal polymorphs. *Cryst. Growth Des.*, 2020, 20(11), 7152–7162. https://doi.org/10.1021/acs.cgd. 0c00753
- 30. J.E. Carpenter, M. Grünwald. Heterogeneous interactions promote crystallization and spontaneous resolution of chiral molecules. *J. Am. Chem. Soc.*, **2020**, *142*(24), 10755–10768. https://doi.org/10.1021/jacs.0c02097
- 31. J.E. Carpenter, M. Grünwald. Pre-nucleation clusters predict crystal structures in models of chiral molecules. J. Am. Chem. Soc., 2021, 143(51), 21580–21593. https://doi.org/10.1021/jacs.1c09321
- Y. Pimonova, J.E. Carpenter, M. Gruenwald. Thermodynamic stability is a poor indicator of cocrystallization in models of organic molecules. J. Am. Chem. Soc., 2024, 146(4), 2805–2815. https://doi.org/10.1021/jacs.3c13030
- 33. B.P. van Eijck, J. Kroon. Structure predictions allowing more than one molecule in the asymmetric unit. *Acta Crystallogr., Sect. B: Struct. Sci.*, **2000**, *56*(3), 535–542. https://doi.org/10.1107/s0108768100000276
- 34. A.M. Banaru. Critical coordination number in homomolecular crystals. *Moscow Univ. Chem. Bull.*, 2009, 64(2), 80–82. https://doi.org/10.3103/s0027131409020023
- 35. V.K. Belsky, P.M. Zorkii. Distribution of organic homomolecular crystals by chiral types and structural classes. *Acta Crystallogr., Sect. A*, **1977**, *33*(6), 1004–1006. https://doi.org/10.1107/s0567739477002393
- L. Resconi, L. Cavallo, A. Fait, F. Piemontesi. Selectivity in propene polymerization with metallocene catalysts. *Chem. Rev.*, 2000, 100(4), 1253–1346. https://doi.org/10.1021/cr9804691
- I.E. Nifant'ev, P.V. Ivchenko, V.V. Bagrov, A.V. Churakov, P. Mercandelli. 5-Methoxy-substituted zirconium bis-indenyl *ansa*-complexes: Synthesis, structure, and catalytic activity in the polymerization and copolymerization of alkenes. *Organometallics*, 2012, *31*(14), 4962–4970. https://doi.org/10.1021/om300160v
- F. Neese. Software update: The ORCA program system Version 5.0. WIREs Comput. Mol. Sci., 2022, 12(5), e1606. https://doi.org/10.1002/wcms.1606
- S. Grimme, A. Hansen, S. Ehlert, J.-M. Mewes. r²SCAN-3c: A «Swiss army knife» composite electronicstructure method. J. Chem. Phys., 2021, 154(6), 64103. https://doi.org/10.1063/5.0040021
- 40. CrysAlisPro. Abingdon, Oxfordshire, UK: Oxford Diffraction, 2009.
- L. Palatinus, G. Chapuis. SUPERFLIP a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr., 2007, 40(4), 786–790. https://doi.org/10.1107/s00218 89807029238
- V. Petříček, L. Palatinus, J. Plášil, M. Dušek. Jana2020 a new version of the crystallographic computing system Jana. Z. Kristallogr. – Cryst. Mater., 2023, 238(7–8), 271–282. https://doi.org/10.1515/zkri-2023-0005
- International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables, 3rd ed. / Ed. E. Prince. Dordrecht, Germany: Springer, 2004. https://doi.org/10.1107/97809553602060000103
- 44. V.A. Blatov, A.P. Shevchenko, D.M. Proserpio. Applied topological analysis of crystal structures with the program package ToposPro. *Cryst. Growth Des.*, **2014**, *14*(7), 3576–3586. https://doi.org/10.1021/cg500498k
- 45. E.V. Peresypkina, V.A. Blatov. Topology of molecular packings in organic crystals. *Acta Crystallogr., Sect. B: Struct. Sci.*, **2000**, *56*(6), 1035–1045. https://doi.org/10.1107/s0108768100011824
- 46. V.A. Blatov. A method for topological analysis of rod packings. *Struct. Chem.*, **2016**, *27*(6), 1605–1611. https://doi.org/10.1007/s11224-016-0774-1
- 47. A.P. Shevchenko, V.A. Blatov. Simplify to understand: how to elucidate crystal structures? *Struct. Chem.*, **2021**, *32*(2), 507–519. https://doi.org/10.1007/s11224-020-01724-4
- 48. V.A. Blatov. Voronoi–Dirichlet polyhedra in crystal chemistry: Theory and applications. *Crystallogr. Rev.*, **2004**, *10*(4), 249–318. https://doi.org/10.1080/08893110412331323170

- 49. E.V. Alexandrov, A.P. Shevchenko, V.A. Blatov. Topological databases: Why do we need them for design of coordination polymers? *Cryst. Growth Des.*, **2019**, *19*(5), 2604–2614. https://doi.org/10.1021/acs.cgd.8b01721
- M. O'Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. *Acc. Chem. Res.*, 2008, 41(12), 1782–1789. https://doi.org/10.1021/ar800124u
- E.V. Alexandrov, V.A. Blatov, A.V. Kochetkov, D.M. Proserpio. Underlying nets in three-periodic coordination polymers: Topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database. *CrystEngComm*, 2011, 13(12), 3947. https://doi.org/10.1039/c0ce00636j
- 52. E.A. Lord, A.M. Banaru. Number of generating elements in space group of a crystal. *Moscow Univ. Chem. Bull.*, **2012**, *67*(2), 50–58. https://doi.org/10.3103/s0027131412020034
- J.J. McKinnon, A.S. Mitchell, M.A. Spackman. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. *Chem. – Eur. J.*, **1998**, 4(11), 2136–2141. https://doi.org/10.1002/(sici)1521-3765(1998 1102)4:11<2136::aid-chem2136>3.0.co;2-g
- J.J. McKinnon, M.A. Spackman, A.S. Mitchell. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. *Acta Crystallogr., Sect. B: Struct. Sci.*, 2004, 60(6), 627–668. https://doi.org/ 10.1107/s0108768104020300
- 55. C. Jelsch, K. Ejsmont, L. Huder. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. *IUCrJ*, **2014**, *1*(2), 119–128. https://doi.org/10.1107/s2052252514003327
- 56. P.M. Zorkii, P.N. Oleinikov. Crystal-chemical classes of «Cambridge» crystal structures: Statistical analysis of topology. J. Struct. Chem., 2001, 42, 24–31. https://doi.org/10.1023/A:1010407703156.
- A.M. Banaru, S.M. Aksenov, D.A. Banaru. Critical molecular coordination numbers in the structural class P2₁/c, Z = 4(1). Moscow Univ. Chem. Bull., 2021, 76(5), 325–333. https://doi.org/10.3103/s00271314210 50023
- L. Pauling. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc., 1929, 51(4), 1010–1026. https://doi.org/10.1021/ja01379a006
- A.M. Banaru, D.A. Banaru, S.M. Aksenov. On the subset of intermolecular contacts generating a molecular crystal: Topological features of organic minerals. *Crystallogr. Rep.*, 2022, 67(7), 1133–1145. https://doi.org/ 10.1134/s1063774522070410
- N.V. Somov, E.V. Chuprunov. On forbidden positions in crystal space. *Crystallogr. Rep.*, 2018, 63(3), 314–318. https://doi.org/10.1134/s1063774518030264
- N.V. Somov, E.V. Chuprunov. On the distribution of molecular crystals of organic and elementoorganic compounds over symmetry space groups. *Crystallogr. Rep.*, 2021, 66(3), 361–366. https://doi.org/10.1134/ s106377452103024x
- 62. S.V. Krivovichev. Which nets are the most common? Reticular chemistry and information entropy. *Cryst-EngComm*, **2024**, *26*(9), 1245–1251. https://doi.org/10.1039/d3ce01230a
- 63. A.M. Banaru, D.A. Banaru. Zorkii structural classes and critical topology of molecular crystals. J. Struct. Chem., 2020, 61(10), 1485–1502. https://doi.org/10.1134/s0022476620100017
- A.P. Shevchenko, A.A. Shabalin, I.Y. Karpukhin, V.A. Blatov. Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. *Sci. Technol. Adv. Mater. Methods*, 2022, 2(1), 250–265. https://doi.org/10.1080/27660400.2022.2088041